DEEP LEARNING BASED AERIAL IMAGERY CLASSIFICATION FOR TREE SPECIES IDENTIFICATION

Q2 Social Sciences
O. Bayrak, F. Erdem, M. Uzar
{"title":"DEEP LEARNING BASED AERIAL IMAGERY CLASSIFICATION FOR TREE SPECIES IDENTIFICATION","authors":"O. Bayrak, F. Erdem, M. Uzar","doi":"10.5194/isprs-archives-xlviii-m-1-2023-471-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Forest monitoring and tree species categorization has a vital importance in terms of biodiversity conservation, ecosystem health assessment, climate change mitigation, and sustainable resource management. Due to large-scale coverage of forest areas, remote sensing technology plays a crucial role in the monitoring of forest areas by timely and regular data acquisition, multi-spectral and multi-temporal analysis, non-invasive data collection, accessibility and cost-effectiveness. High-resolution satellite and airborne remote sensing technologies have supplied image data with rich spatial, color, and texture information. Nowadays, deep learning models are commonly utilized in image classification, object recognition, and semantic segmentation applications in remote sensing and forest monitoring as well. We, in this study, selected a popular CNN and object detection algorithm YOLOv8 variants for tree species classification from aerial images of TreeSatAI benchmark. Our results showed that YOLOv8-l outperformed benchmark’s initial release results, and other YOLOv8 variants with 71,55% and 72,70% for weighted and micro averaging scores, respectively.\n","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-m-1-2023-471-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Forest monitoring and tree species categorization has a vital importance in terms of biodiversity conservation, ecosystem health assessment, climate change mitigation, and sustainable resource management. Due to large-scale coverage of forest areas, remote sensing technology plays a crucial role in the monitoring of forest areas by timely and regular data acquisition, multi-spectral and multi-temporal analysis, non-invasive data collection, accessibility and cost-effectiveness. High-resolution satellite and airborne remote sensing technologies have supplied image data with rich spatial, color, and texture information. Nowadays, deep learning models are commonly utilized in image classification, object recognition, and semantic segmentation applications in remote sensing and forest monitoring as well. We, in this study, selected a popular CNN and object detection algorithm YOLOv8 variants for tree species classification from aerial images of TreeSatAI benchmark. Our results showed that YOLOv8-l outperformed benchmark’s initial release results, and other YOLOv8 variants with 71,55% and 72,70% for weighted and micro averaging scores, respectively.
基于深度学习的航空影像树种识别分类
摘要森林监测和树种分类在生物多样性保护、生态系统健康评估、缓解气候变化和可持续资源管理方面具有至关重要的意义。由于森林地区的大规模覆盖,遥感技术通过及时和定期的数据采集、多光谱和多时相分析、非侵入性数据收集、可访问性和成本效益,在森林地区的监测中发挥着至关重要的作用。高分辨率卫星和航空遥感技术为图像数据提供了丰富的空间、色彩和纹理信息。如今,深度学习模型通常用于图像分类、对象识别以及遥感和森林监测中的语义分割应用。在这项研究中,我们从TreeSatAI基准的航空图像中选择了一种流行的CNN和对象检测算法YOLOv8变体用于树种分类。我们的结果显示,YOLOv8-l的加权和微观平均得分分别为71,55%和72,70%,优于基准的初始发布结果和其他YOLOv8变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信