The Super Restricted Edge-connectedness of Direct Product Graphs

IF 0.5 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Minglu Bai, Yingzhi Tian, Jiaqiong Yin
{"title":"The Super Restricted Edge-connectedness of Direct Product Graphs","authors":"Minglu Bai, Yingzhi Tian, Jiaqiong Yin","doi":"10.1142/s0129626423500081","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. An edge subset [Formula: see text] is called a restricted edge-cut if [Formula: see text] is disconnected and has no isolated vertices. The restricted edge-connectivity [Formula: see text] of [Formula: see text] is the cardinality of a minimum restricted edge-cut of [Formula: see text] if it has any; otherwise [Formula: see text]. If [Formula: see text] is not a star and its order is at least four, then [Formula: see text], where [Formula: see text]. The graph [Formula: see text] is said to be maximally restricted edge-connected if [Formula: see text]; the graph [Formula: see text] is said to be super restricted edge-connected if every minimum restricted edge-cut isolates an edge from [Formula: see text]. The direct product of graphs [Formula: see text] and [Formula: see text], denoted by [Formula: see text], is the graph with vertex set [Formula: see text], where two vertices [Formula: see text] and [Formula: see text] are adjacent in [Formula: see text] if and only if [Formula: see text] and [Formula: see text]. In this paper, we give a sufficient condition for [Formula: see text] to be super restricted edge-connected, where [Formula: see text] is the complete graph on [Formula: see text] vertices.","PeriodicalId":44742,"journal":{"name":"Parallel Processing Letters","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Processing Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129626423500081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. An edge subset [Formula: see text] is called a restricted edge-cut if [Formula: see text] is disconnected and has no isolated vertices. The restricted edge-connectivity [Formula: see text] of [Formula: see text] is the cardinality of a minimum restricted edge-cut of [Formula: see text] if it has any; otherwise [Formula: see text]. If [Formula: see text] is not a star and its order is at least four, then [Formula: see text], where [Formula: see text]. The graph [Formula: see text] is said to be maximally restricted edge-connected if [Formula: see text]; the graph [Formula: see text] is said to be super restricted edge-connected if every minimum restricted edge-cut isolates an edge from [Formula: see text]. The direct product of graphs [Formula: see text] and [Formula: see text], denoted by [Formula: see text], is the graph with vertex set [Formula: see text], where two vertices [Formula: see text] and [Formula: see text] are adjacent in [Formula: see text] if and only if [Formula: see text] and [Formula: see text]. In this paper, we give a sufficient condition for [Formula: see text] to be super restricted edge-connected, where [Formula: see text] is the complete graph on [Formula: see text] vertices.
直积图的超限制边连通性
设[公式:参见文本]是一个具有顶点集[公式:见文本]和边集[公式:见文本]的图。如果[公式:见文本]断开连接且没有孤立顶点,则边子集[公式:参见文本]称为限制边切割。[公式:见文本]的受限边连通性[公式:见图文本]是[公式:看文本]的最小受限边割的基数(如果有);否则[公式:见正文]。如果[Former:见正文]不是一个星,并且它的阶数至少为四,那么[Former::见正文],其中[Former:-见正文]。如果[公式:参见文本],则图[公式:见文本]被称为最大限制边连接;如果每个最小受限边切割都将一条边与[公式:见文本]隔离,则图[公式:见图文本]被称为超受限边连接。图[公式:见文本]和[公式:看文本]的直积,表示为[公式:见图文本],是具有顶点集[公式:见文文本]的图,其中两个顶点[公式:参见文本]和【公式:见正文】在[公式:查看文本]中相邻,当且仅当[公式:详见文本]和[Formula:见正文]。本文给出了[公式:见正文]是超限制边连通的一个充分条件,其中[公式:看正文]是[公式:见正文]顶点上的完备图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Parallel Processing Letters
Parallel Processing Letters COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
0.90
自引率
25.00%
发文量
12
期刊介绍: Parallel Processing Letters (PPL) aims to rapidly disseminate results on a worldwide basis in the field of parallel processing in the form of short papers. It fills the need for an information vehicle which can convey recent achievements and further the exchange of scientific information in the field. This journal has a wide scope and topics covered included: - design and analysis of parallel and distributed algorithms - theory of parallel computation - parallel programming languages - parallel programming environments - parallel architectures and VLSI circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信