Jordan triple (α,β)-higher ∗-derivations on semiprime rings

IF 2 3区 数学 Q1 MATHEMATICS
O. H. Ezzat
{"title":"Jordan triple (α,β)-higher ∗-derivations on semiprime rings","authors":"O. H. Ezzat","doi":"10.1515/dema-2022-0213","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we define the following: Let N 0 {{\\mathbb{N}}}_{0} be the set of all nonnegative integers and D = ( d i ) i ∈ N 0 D={\\left({d}_{i})}_{i\\in {{\\mathbb{N}}}_{0}} a family of additive mappings of a ∗ \\ast -ring R R such that d 0 = i d R {d}_{0}=i{d}_{R} . D D is called a Jordan ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation (resp. a Jordan triple ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation) of R R if d n ( a 2 ) = ∑ i + j = n d i ( β j ( a ) ) d j ( α i ( a ∗ i ) ) {d}_{n}\\left({a}^{2})={\\sum }_{i+j=n}{d}_{i}\\left({\\beta }^{j}\\left(a)){d}_{j}\\left({\\alpha }^{i}\\left({a}^{{\\ast }^{i}})) (resp. d n ( a b a ) = ∑ i + j + k = n d i ( β j + k ( a ) ) d j ( β k ( α i ( b ∗ i ) ) ) d k ( α i + j ( a ∗ i + j ) ) {d}_{n}\\left(aba)={\\sum }_{i+j+k=n}{d}_{i}\\left({\\beta }^{j+k}\\left(a)){d}_{j}\\left({\\beta }^{k}\\left({\\alpha }^{i}\\left({b}^{{\\ast }^{i}}))){d}_{k}\\left({\\alpha }^{i+j}\\left({a}^{{\\ast }^{i+j}})) ) for all a , b ∈ R a,b\\in R and each n ∈ N 0 n\\in {{\\mathbb{N}}}_{0} . We show that the two notions of Jordan ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation and Jordan triple ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation on a 6-torsion free semiprime ∗ \\ast -ring are equivalent.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0213","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, we define the following: Let N 0 {{\mathbb{N}}}_{0} be the set of all nonnegative integers and D = ( d i ) i ∈ N 0 D={\left({d}_{i})}_{i\in {{\mathbb{N}}}_{0}} a family of additive mappings of a ∗ \ast -ring R R such that d 0 = i d R {d}_{0}=i{d}_{R} . D D is called a Jordan ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation (resp. a Jordan triple ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation) of R R if d n ( a 2 ) = ∑ i + j = n d i ( β j ( a ) ) d j ( α i ( a ∗ i ) ) {d}_{n}\left({a}^{2})={\sum }_{i+j=n}{d}_{i}\left({\beta }^{j}\left(a)){d}_{j}\left({\alpha }^{i}\left({a}^{{\ast }^{i}})) (resp. d n ( a b a ) = ∑ i + j + k = n d i ( β j + k ( a ) ) d j ( β k ( α i ( b ∗ i ) ) ) d k ( α i + j ( a ∗ i + j ) ) {d}_{n}\left(aba)={\sum }_{i+j+k=n}{d}_{i}\left({\beta }^{j+k}\left(a)){d}_{j}\left({\beta }^{k}\left({\alpha }^{i}\left({b}^{{\ast }^{i}}))){d}_{k}\left({\alpha }^{i+j}\left({a}^{{\ast }^{i+j}})) ) for all a , b ∈ R a,b\in R and each n ∈ N 0 n\in {{\mathbb{N}}}_{0} . We show that the two notions of Jordan ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation and Jordan triple ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation on a 6-torsion free semiprime ∗ \ast -ring are equivalent.
半素环上的Jordan三重(α,β)-高* -导数
在本文中,我们定义如下:设N为0 {{\mathbb{N}}}_{0} 为所有非负整数的集合,且D= (d1) i∈n0 D={\left({d}_{I})}_{I\in {{\mathbb{N}}}_{0}} A *的一组可加映射 \ast -环R R使得d0 = i d R {d}_{0}= 1{d}_{r} 。D D被称为约当(α, β) \left(\alpha ,\beta ) -较高* \ast - derivative(衍生)Jordan三重(α, β) \left(\alpha ,\beta ) -较高* \ast 如果d n (a 2) =∑i + j = n d i (β j (a)) d j (α i (a * i)) {d}_{n}\left({a}^{2})={\sum }_{i+j=n}{d}_{I}\left({\beta }^{j}\left(a)){d}_{j}\left({\alpha }^{I}\left({a}^{{\ast }^{I}})(回答;回答D n (a b a) =∑I + j + k = n D I (β j + k (a)) D j (β k (α I (b∗I))) D k (α I + j (a∗I + j))) {d}_{n}\left(aba)={\sum }_{i+j+k=n}{d}_{I}\left({\beta }^{j+k}\left(a)){d}_{j}\left({\beta }^{k}\left({\alpha }^{I}\left({b}^{{\ast }^{I}}))){d}_{k}\left({\alpha }^{i+j}\left({a}^{{\ast }^{i+j}})))对于所有a,b∈R a,b\in R和每个n∈n0n\in {{\mathbb{N}}}_{0} 。我们证明了Jordan (α, β)的两个概念 \left(\alpha ,\beta ) -较高* \ast -衍生和Jordan三重(α, β) \left(\alpha ,\beta ) -较高* \ast 6-无扭转半素数*上的导数 \ast -环是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信