{"title":"Jordan triple (α,β)-higher ∗-derivations on semiprime rings","authors":"O. H. Ezzat","doi":"10.1515/dema-2022-0213","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we define the following: Let N 0 {{\\mathbb{N}}}_{0} be the set of all nonnegative integers and D = ( d i ) i ∈ N 0 D={\\left({d}_{i})}_{i\\in {{\\mathbb{N}}}_{0}} a family of additive mappings of a ∗ \\ast -ring R R such that d 0 = i d R {d}_{0}=i{d}_{R} . D D is called a Jordan ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation (resp. a Jordan triple ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation) of R R if d n ( a 2 ) = ∑ i + j = n d i ( β j ( a ) ) d j ( α i ( a ∗ i ) ) {d}_{n}\\left({a}^{2})={\\sum }_{i+j=n}{d}_{i}\\left({\\beta }^{j}\\left(a)){d}_{j}\\left({\\alpha }^{i}\\left({a}^{{\\ast }^{i}})) (resp. d n ( a b a ) = ∑ i + j + k = n d i ( β j + k ( a ) ) d j ( β k ( α i ( b ∗ i ) ) ) d k ( α i + j ( a ∗ i + j ) ) {d}_{n}\\left(aba)={\\sum }_{i+j+k=n}{d}_{i}\\left({\\beta }^{j+k}\\left(a)){d}_{j}\\left({\\beta }^{k}\\left({\\alpha }^{i}\\left({b}^{{\\ast }^{i}}))){d}_{k}\\left({\\alpha }^{i+j}\\left({a}^{{\\ast }^{i+j}})) ) for all a , b ∈ R a,b\\in R and each n ∈ N 0 n\\in {{\\mathbb{N}}}_{0} . We show that the two notions of Jordan ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation and Jordan triple ( α , β ) \\left(\\alpha ,\\beta ) -higher ∗ \\ast -derivation on a 6-torsion free semiprime ∗ \\ast -ring are equivalent.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0213","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, we define the following: Let N 0 {{\mathbb{N}}}_{0} be the set of all nonnegative integers and D = ( d i ) i ∈ N 0 D={\left({d}_{i})}_{i\in {{\mathbb{N}}}_{0}} a family of additive mappings of a ∗ \ast -ring R R such that d 0 = i d R {d}_{0}=i{d}_{R} . D D is called a Jordan ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation (resp. a Jordan triple ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation) of R R if d n ( a 2 ) = ∑ i + j = n d i ( β j ( a ) ) d j ( α i ( a ∗ i ) ) {d}_{n}\left({a}^{2})={\sum }_{i+j=n}{d}_{i}\left({\beta }^{j}\left(a)){d}_{j}\left({\alpha }^{i}\left({a}^{{\ast }^{i}})) (resp. d n ( a b a ) = ∑ i + j + k = n d i ( β j + k ( a ) ) d j ( β k ( α i ( b ∗ i ) ) ) d k ( α i + j ( a ∗ i + j ) ) {d}_{n}\left(aba)={\sum }_{i+j+k=n}{d}_{i}\left({\beta }^{j+k}\left(a)){d}_{j}\left({\beta }^{k}\left({\alpha }^{i}\left({b}^{{\ast }^{i}}))){d}_{k}\left({\alpha }^{i+j}\left({a}^{{\ast }^{i+j}})) ) for all a , b ∈ R a,b\in R and each n ∈ N 0 n\in {{\mathbb{N}}}_{0} . We show that the two notions of Jordan ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation and Jordan triple ( α , β ) \left(\alpha ,\beta ) -higher ∗ \ast -derivation on a 6-torsion free semiprime ∗ \ast -ring are equivalent.
在本文中,我们定义如下:设N为0 {{\mathbb{N}}}_{0} 为所有非负整数的集合,且D= (d1) i∈n0 D={\left({d}_{I})}_{I\in {{\mathbb{N}}}_{0}} A *的一组可加映射 \ast -环R R使得d0 = i d R {d}_{0}= 1{d}_{r} 。D D被称为约当(α, β) \left(\alpha ,\beta ) -较高* \ast - derivative(衍生)Jordan三重(α, β) \left(\alpha ,\beta ) -较高* \ast 如果d n (a 2) =∑i + j = n d i (β j (a)) d j (α i (a * i)) {d}_{n}\left({a}^{2})={\sum }_{i+j=n}{d}_{I}\left({\beta }^{j}\left(a)){d}_{j}\left({\alpha }^{I}\left({a}^{{\ast }^{I}})(回答;回答D n (a b a) =∑I + j + k = n D I (β j + k (a)) D j (β k (α I (b∗I))) D k (α I + j (a∗I + j))) {d}_{n}\left(aba)={\sum }_{i+j+k=n}{d}_{I}\left({\beta }^{j+k}\left(a)){d}_{j}\left({\beta }^{k}\left({\alpha }^{I}\left({b}^{{\ast }^{I}}))){d}_{k}\left({\alpha }^{i+j}\left({a}^{{\ast }^{i+j}})))对于所有a,b∈R a,b\in R和每个n∈n0n\in {{\mathbb{N}}}_{0} 。我们证明了Jordan (α, β)的两个概念 \left(\alpha ,\beta ) -较高* \ast -衍生和Jordan三重(α, β) \left(\alpha ,\beta ) -较高* \ast 6-无扭转半素数*上的导数 \ast -环是等价的。
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.