Samreen Naeem, Aqib Ali, Jamal Abdul Nasir, Arooj Fatima, Farrukh Jamal, M. Ahmed, Muhammad Rizwan, Sania Anam, Muhammad Zubair
{"title":"Automated Corn Seed Fusarium Disease Classification System Using Hybrid Feature Space and Conventional Machine Learning Techniques","authors":"Samreen Naeem, Aqib Ali, Jamal Abdul Nasir, Arooj Fatima, Farrukh Jamal, M. Ahmed, Muhammad Rizwan, Sania Anam, Muhammad Zubair","doi":"10.53560/ppasa(58-2)692","DOIUrl":null,"url":null,"abstract":"The purpose of this learning is to detect the Corn Seed Fusarium Disease using Hybrid Feature Space and Conventional machine learning (ML) approaches. A novel machine learning approach is employed for the classification of a total of six types of corn seed are collected which contain Infected Fusarium (moniliforme, graminearum, gibberella, verticillioides, kernel) as well as healthy corn seed, based on a multi-feature dataset, which is the grouping of geometric, texture and histogram features extracted from digital images. For each corn seed image, a total of twenty-five multi-features have been developed on every area of interest (AOI), sizes (50 × 50), (100 × 100), (150 × 150), and (200 × 200). A total of seven optimized features were selected by using a machine learning-based algorithm named “Correlation-based Feature Selection”. For experimentation, “Random forest”, “BayesNet” and “LogitBoost” have been employed using an optimized multi-feature user-supplied dataset divided with 70% training and 30 % testing. A comparative analysis of three ML classifiers RF, BN, and LB have been used and a considerably very high classification ratio of 96.67 %, 97.22 %, and 97.78 % have been achieved respectively when the AOI size (200×200) have been deployed to the classifiers.","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(58-2)692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this learning is to detect the Corn Seed Fusarium Disease using Hybrid Feature Space and Conventional machine learning (ML) approaches. A novel machine learning approach is employed for the classification of a total of six types of corn seed are collected which contain Infected Fusarium (moniliforme, graminearum, gibberella, verticillioides, kernel) as well as healthy corn seed, based on a multi-feature dataset, which is the grouping of geometric, texture and histogram features extracted from digital images. For each corn seed image, a total of twenty-five multi-features have been developed on every area of interest (AOI), sizes (50 × 50), (100 × 100), (150 × 150), and (200 × 200). A total of seven optimized features were selected by using a machine learning-based algorithm named “Correlation-based Feature Selection”. For experimentation, “Random forest”, “BayesNet” and “LogitBoost” have been employed using an optimized multi-feature user-supplied dataset divided with 70% training and 30 % testing. A comparative analysis of three ML classifiers RF, BN, and LB have been used and a considerably very high classification ratio of 96.67 %, 97.22 %, and 97.78 % have been achieved respectively when the AOI size (200×200) have been deployed to the classifiers.