Minimal growth of entire functions with prescribed zeros outside exceptional sets

Q3 Mathematics
I. Andrusyak, P. Filevych, O. Oryshchyn
{"title":"Minimal growth of entire functions with prescribed zeros outside exceptional sets","authors":"I. Andrusyak, P. Filevych, O. Oryshchyn","doi":"10.30970/ms.58.1.51-57","DOIUrl":null,"url":null,"abstract":"Let $h$ be a positive continuous increasing to $+\\infty$ function on $\\mathbb{R}$. It is proved that for an arbitrary complex sequence $(\\zeta_n)$ such that $0<|\\zeta_1|\\le|\\zeta_2|\\le\\dots$ and $\\zeta_n\\to\\infty$ as $n\\to\\infty$, there exists an entire function $f$ whose zeros are the $\\zeta_n$, with multiplicities taken into account, for which$$\\ln m_2(r,f)=o(N(r)),\\quad r\\notin E,\\ r\\to+\\infty.$$with a set $E$ satisfying $\\int_{E\\cap(1,+\\infty)}h(r)dr<+\\infty$, if and only if $\\ln h(r)=O(\\ln r)$ as $r\\to+\\infty$.Here $N(r)$ is the integrated counting function of the sequence $(\\zeta_n)$ and$$m_2(r,f)=\\left(\\frac{1}{2\\pi}\\int_0^{2\\pi}|\\ln|f(re^{i\\theta})||^2d\\theta\\right)^{1/2}.$$","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.1.51-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $h$ be a positive continuous increasing to $+\infty$ function on $\mathbb{R}$. It is proved that for an arbitrary complex sequence $(\zeta_n)$ such that $0<|\zeta_1|\le|\zeta_2|\le\dots$ and $\zeta_n\to\infty$ as $n\to\infty$, there exists an entire function $f$ whose zeros are the $\zeta_n$, with multiplicities taken into account, for which$$\ln m_2(r,f)=o(N(r)),\quad r\notin E,\ r\to+\infty.$$with a set $E$ satisfying $\int_{E\cap(1,+\infty)}h(r)dr<+\infty$, if and only if $\ln h(r)=O(\ln r)$ as $r\to+\infty$.Here $N(r)$ is the integrated counting function of the sequence $(\zeta_n)$ and$$m_2(r,f)=\left(\frac{1}{2\pi}\int_0^{2\pi}|\ln|f(re^{i\theta})||^2d\theta\right)^{1/2}.$$
例外集外具有指定零的整函数的最小增长
设$h$是$\mathbb{R}$上的$+\infty$函数的正连续递增。证明了对于任意复序列$(\zeta_n)$,使得$0<|\zeta_1|\le|\zeta_2|\le\dots$和$\zeta.n\to\infty$为$n\to\infty$.存在一个完整函数$f$,其零是$\zeta_n$,并考虑了乘法性,其中$$\ln m_2(r,f)=o(n(r)),\quad r notin E,\to+\infty$$其中集合$E$满足$\int_{E\cap(1,+\infty)}h(r)dr<+\infty$,当且仅当$\ln h(r)=O(\ln r)$为$r\to+\infity$。这里$N(r)$是序列$(\zeta_N)$和$$m_2(r,f)=\left(\frac{1}{2 \pi}\int_0^{2 \ pi}|\ln|f(re^{i \ theta})||^2d \ theta \ right)^{1/2}的积分计数函数$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信