Estimation of the Parameters of Power Function Distribution based on Records

E. I. Abdul-Sathar, G. S. Sathyareji
{"title":"Estimation of the Parameters of Power Function Distribution based on Records","authors":"E. I. Abdul-Sathar, G. S. Sathyareji","doi":"10.4038/sljastats.v22i2.8040","DOIUrl":null,"url":null,"abstract":"This paper estimates the power function distribution parameters and predicts the future record values when samples are available only in the form of upper record values. We considered the maximum likelihood and Bayesian techniques for the estimation. We also construct asymptotic, bootstrap, and HPD confidence intervals for the unknown parameters. Bayes estimators are derived using the squared error loss function, entropy loss function, and Linex loss function using the Lindley approximation and importance sampling procedures. Finally, we conduct a simulation study to compare all the proposed estimation methods and analyse a real data set for illustration purposes.","PeriodicalId":91408,"journal":{"name":"Sri Lankan journal of applied statistics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sri Lankan journal of applied statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4038/sljastats.v22i2.8040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper estimates the power function distribution parameters and predicts the future record values when samples are available only in the form of upper record values. We considered the maximum likelihood and Bayesian techniques for the estimation. We also construct asymptotic, bootstrap, and HPD confidence intervals for the unknown parameters. Bayes estimators are derived using the squared error loss function, entropy loss function, and Linex loss function using the Lindley approximation and importance sampling procedures. Finally, we conduct a simulation study to compare all the proposed estimation methods and analyse a real data set for illustration purposes.
基于记录的幂函数分布参数估计
当样本仅以上记录值的形式可用时,本文估计了幂函数分布参数,并预测了未来的记录值。我们考虑了最大似然和贝叶斯技术进行估计。我们还构造了未知参数的渐近、自举和HPD置信区间。Bayes估计量是使用平方误差损失函数、熵损失函数和Linex损失函数,使用Lindley近似和重要性抽样程序导出的。最后,我们进行了模拟研究,比较了所有提出的估计方法,并分析了真实的数据集以供说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信