On the Sampling Size for Inverse Sampling

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2022-11-15 DOI:10.3390/stats5040067
Daniele Cuntrera, V. Falco, O. Giambalvo
{"title":"On the Sampling Size for Inverse Sampling","authors":"Daniele Cuntrera, V. Falco, O. Giambalvo","doi":"10.3390/stats5040067","DOIUrl":null,"url":null,"abstract":"In the Big Data era, sampling remains a central theme. This paper investigates the characteristics of inverse sampling on two different datasets (real and simulated) to determine when big data become too small for inverse sampling to be used and to examine the impact of the sampling rate of the subsamples. We find that the method, using the appropriate subsample size for both the mean and proportion parameters, performs well with a smaller dataset than big data through the simulation study and real-data application. Different settings related to the selection bias severity are considered during the simulation study and real application.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats5040067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

In the Big Data era, sampling remains a central theme. This paper investigates the characteristics of inverse sampling on two different datasets (real and simulated) to determine when big data become too small for inverse sampling to be used and to examine the impact of the sampling rate of the subsamples. We find that the method, using the appropriate subsample size for both the mean and proportion parameters, performs well with a smaller dataset than big data through the simulation study and real-data application. Different settings related to the selection bias severity are considered during the simulation study and real application.
关于反抽样的抽样大小
在大数据时代,采样仍然是一个中心主题。本文研究了两个不同数据集(真实数据集和模拟数据集)上的逆采样特性,以确定大数据何时变得太小而无法使用逆采样,并检查子样本采样率的影响。通过模拟研究和实际数据应用,我们发现该方法对均值和比例参数都使用了适当的子样本大小,在比大数据更小的数据集下表现良好。在模拟研究和实际应用过程中,考虑了与选择偏差严重程度相关的不同设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信