{"title":"Measurable Foliations Associated to the Coadjoint Representation of a Class of Seven-Dimensional Solvable Lie Groups","authors":"V. Le, Tu T. C. Nguyen, T. Nguyen","doi":"10.7546/jgsp-65-2023-41-65","DOIUrl":null,"url":null,"abstract":"We consider connected and simply connected seven-dimensional Lie groups whose Lie algebras have nilradical $\\g_{5,2}$ of Dixmier. First, we give geometric descriptions of the maximal-dimensional orbits in the coadjoint representation of all considered Lie groups. Next, we prove that, for each considered group, the family of the generic coadjoint orbits forms a measurable foliation in the sense of Connes. Finally, the topological classification of all these foliations is also provided.","PeriodicalId":43078,"journal":{"name":"Journal of Geometry and Symmetry in Physics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Symmetry in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-65-2023-41-65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We consider connected and simply connected seven-dimensional Lie groups whose Lie algebras have nilradical $\g_{5,2}$ of Dixmier. First, we give geometric descriptions of the maximal-dimensional orbits in the coadjoint representation of all considered Lie groups. Next, we prove that, for each considered group, the family of the generic coadjoint orbits forms a measurable foliation in the sense of Connes. Finally, the topological classification of all these foliations is also provided.
期刊介绍:
The Journal of Geometry and Symmetry in Physics is a fully-refereed, independent international journal. It aims to facilitate the rapid dissemination, at low cost, of original research articles reporting interesting and potentially important ideas, and invited review articles providing background, perspectives, and useful sources of reference material. In addition to such contributions, the journal welcomes extended versions of talks in the area of geometry of classical and quantum systems delivered at the annual conferences on Geometry, Integrability and Quantization in Bulgaria. An overall idea is to provide a forum for an exchange of information, ideas and inspiration and further development of the international collaboration. The potential authors are kindly invited to submit their papers for consideraion in this Journal either to one of the Associate Editors listed below or to someone of the Editors of the Proceedings series whose expertise covers the research topic, and with whom the author can communicate effectively, or directly to the JGSP Editorial Office at the address given below. More details regarding submission of papers can be found by clicking on "Notes for Authors" button above. The publication program foresees four quarterly issues per year of approximately 128 pages each.