“Zebrafish as an animal model for food safety research: trends in the animal research”

IF 1.8 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
R. Bailone, L. D. Aguiar, R. Roça, R. Borra, Tatiana Corrêa, H. Janke, H. Fukushima
{"title":"“Zebrafish as an animal model for food safety research: trends in the animal research”","authors":"R. Bailone, L. D. Aguiar, R. Roça, R. Borra, Tatiana Corrêa, H. Janke, H. Fukushima","doi":"10.1080/08905436.2019.1673173","DOIUrl":null,"url":null,"abstract":"ABSTRACT Toxicity studies in mammals continue to be the most appropriate model for predicting risk in humans, but they tend to be expensive and time-consuming. In the aftermath of the genetic sequencing of zebrafish (Danio rerio), this species is highly genetically homologous to humans. The use of the zebrafish model to assess food toxicity is already a reality as it is capable of biological processes difficult to reproduce in vitro. Studies of complex mechanisms of absorption, distribution, metabolism, and excretion as well as cellular and tissue interactions are of great information value resulting in time, space and cost savings, when compared to studies with rodents. This review addresses the relevance of zebrafish model in food safety research, both in the use of ingredients and approved and generally recognized as safe food additives as well as for establishing levels of safe food contaminant residues present in the environment. Toxicological screening using the zebrafish model integrate the evaluation of teratogenicity, cardiotoxicity, hepatotoxicity, genotoxicity, neurotoxicity, endocrine toxicity, reproductive and behavioral aspects. These are important endpoints for food safety assessment, which take substantially less time than in mammalian tests. Furthermore, it serves well as a screening test follow-up for validating favorable results in murine models, hence accelerating the risk assessment process of products submitted for approval and registration, prioritizing safe compounds and reducing unnecessary costs in subsequent mammalian studies. In conclusion, the zebrafish model can be a useful tool for food safety tests; however, additional studies are needed to further validate this model for registration of new food ingredients and additives.","PeriodicalId":12347,"journal":{"name":"Food Biotechnology","volume":"33 1","pages":"283 - 302"},"PeriodicalIF":1.8000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08905436.2019.1673173","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/08905436.2019.1673173","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 17

Abstract

ABSTRACT Toxicity studies in mammals continue to be the most appropriate model for predicting risk in humans, but they tend to be expensive and time-consuming. In the aftermath of the genetic sequencing of zebrafish (Danio rerio), this species is highly genetically homologous to humans. The use of the zebrafish model to assess food toxicity is already a reality as it is capable of biological processes difficult to reproduce in vitro. Studies of complex mechanisms of absorption, distribution, metabolism, and excretion as well as cellular and tissue interactions are of great information value resulting in time, space and cost savings, when compared to studies with rodents. This review addresses the relevance of zebrafish model in food safety research, both in the use of ingredients and approved and generally recognized as safe food additives as well as for establishing levels of safe food contaminant residues present in the environment. Toxicological screening using the zebrafish model integrate the evaluation of teratogenicity, cardiotoxicity, hepatotoxicity, genotoxicity, neurotoxicity, endocrine toxicity, reproductive and behavioral aspects. These are important endpoints for food safety assessment, which take substantially less time than in mammalian tests. Furthermore, it serves well as a screening test follow-up for validating favorable results in murine models, hence accelerating the risk assessment process of products submitted for approval and registration, prioritizing safe compounds and reducing unnecessary costs in subsequent mammalian studies. In conclusion, the zebrafish model can be a useful tool for food safety tests; however, additional studies are needed to further validate this model for registration of new food ingredients and additives.
斑马鱼作为食品安全研究的动物模型:动物研究的趋势
摘要哺乳动物毒性研究仍然是预测人类风险的最合适模型,但它们往往成本高昂且耗时。在对斑马鱼(Danio rerio)进行基因测序后,该物种与人类在基因上高度同源。使用斑马鱼模型评估食物毒性已经成为现实,因为它能够进行难以在体外繁殖的生物过程。与啮齿类动物的研究相比,对吸收、分布、代谢和排泄以及细胞和组织相互作用的复杂机制的研究具有很大的信息价值,从而节省时间、空间和成本。这篇综述阐述了斑马鱼模型在食品安全研究中的相关性,包括成分的使用、批准和普遍公认的安全食品添加剂,以及确定环境中存在的安全食品污染物残留水平。使用斑马鱼模型进行的毒理学筛选综合了致畸性、心脏毒性、肝毒性、遗传毒性、神经毒性、内分泌毒性、生殖和行为方面的评估。这些都是食品安全评估的重要终点,与哺乳动物测试相比,食品安全评估所需的时间要少得多。此外,它还可以作为筛选测试的后续行动,验证小鼠模型中的有利结果,从而加快提交批准和注册的产品的风险评估过程,优先考虑安全化合物,并在随后的哺乳动物研究中降低不必要的成本。总之,斑马鱼模型可以成为食品安全测试的有用工具;然而,还需要更多的研究来进一步验证这种新食品成分和添加剂注册模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Biotechnology
Food Biotechnology 工程技术-生物工程与应用微生物
CiteScore
3.80
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Food Biotechnology is an international, peer-reviewed journal that is focused on current and emerging developments and applications of modern genetics, enzymatic, metabolic and systems-based biochemical processes in food and food-related biological systems. The goal is to help produce and improve foods, food ingredients, and functional foods at the processing stage and beyond agricultural production. Other areas of strong interest are microbial and fermentation-based metabolic processing to improve foods, food microbiomes for health, metabolic basis for food ingredients with health benefits, molecular and metabolic approaches to functional foods, and biochemical processes for food waste remediation. In addition, articles addressing the topics of modern molecular, metabolic and biochemical approaches to improving food safety and quality are also published. Researchers in agriculture, food science and nutrition, including food and biotechnology consultants around the world will benefit from the research published in Food Biotechnology. The published research and reviews can be utilized to further educational and research programs and may also be applied to food quality and value added processing challenges, which are continuously evolving and expanding based upon the peer reviewed research conducted and published in the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信