{"title":"A novel event-triggered adaptive tracking control framework for a manipulator with aperiodic neural network estimation","authors":"Jie Gao","doi":"10.1108/aa-02-2022-0025","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study is developing the minimum parameter learning law for the weight updating, which reduces the updating of neural network (NN) weight only at triggering instants and makes a trade-off between the estimation accuracy and triggering frequency such that the computing complexity can be decreased. Besides that, a novel “soft” method is first constructed for the control updating at the triggered instants, to reduce the chattering effect of discontinued renewal of control. Addressing to the proposed control and updating method, a novel dead-zone condition with variable boundary about the triggered control signal is derived to ensure the positivity of adjacent execution intervals.\n\n\nDesign/methodology/approach\nIn this paper, to achieve the motion tracking of manipulator with uncertainty of system dynamics and the communication constraints in the control-execution channel, an adaptive event-triggered controller with NN identification is constructed to improve the transmission efficiency of control on the premise of the guaranteed performance. In the proposed method, the NN with intermittent updating is proposed to perform the uncertain approximation with the saved computation, and the triggered mechanism is constructed to regulate the transportation of the signal in the channel of controller-to-actuator.\n\n\nFindings\nAccording to the impulsive Lyapunov function, it can be proved that all the signals are semi-global uniformly ultimately bounded, and the positivity of adjacent execution intervals is also guaranteed by the proposed method. In addition, the chattering effect of control updating at the jumping instants can be relieved by the proposed “soft” mechanism, such that the control accuracy and stability can be guaranteed. Experiments on the JACO2 real manipulator are carried out to verify the effectiveness of the proposed scheme.\n\n\nOriginality/value\nTo the best of the author’s knowledge, this study is firstly to propose a “soft” method to reduce the chattering effect caused by discontinuous updating. Addressing to the updating method designed above, a novel dead-zone condition with variable threshold and boundary is first constructed to ensure the positivity of execution intervals.\n","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/aa-02-2022-0025","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose
The purpose of this study is developing the minimum parameter learning law for the weight updating, which reduces the updating of neural network (NN) weight only at triggering instants and makes a trade-off between the estimation accuracy and triggering frequency such that the computing complexity can be decreased. Besides that, a novel “soft” method is first constructed for the control updating at the triggered instants, to reduce the chattering effect of discontinued renewal of control. Addressing to the proposed control and updating method, a novel dead-zone condition with variable boundary about the triggered control signal is derived to ensure the positivity of adjacent execution intervals.
Design/methodology/approach
In this paper, to achieve the motion tracking of manipulator with uncertainty of system dynamics and the communication constraints in the control-execution channel, an adaptive event-triggered controller with NN identification is constructed to improve the transmission efficiency of control on the premise of the guaranteed performance. In the proposed method, the NN with intermittent updating is proposed to perform the uncertain approximation with the saved computation, and the triggered mechanism is constructed to regulate the transportation of the signal in the channel of controller-to-actuator.
Findings
According to the impulsive Lyapunov function, it can be proved that all the signals are semi-global uniformly ultimately bounded, and the positivity of adjacent execution intervals is also guaranteed by the proposed method. In addition, the chattering effect of control updating at the jumping instants can be relieved by the proposed “soft” mechanism, such that the control accuracy and stability can be guaranteed. Experiments on the JACO2 real manipulator are carried out to verify the effectiveness of the proposed scheme.
Originality/value
To the best of the author’s knowledge, this study is firstly to propose a “soft” method to reduce the chattering effect caused by discontinuous updating. Addressing to the updating method designed above, a novel dead-zone condition with variable threshold and boundary is first constructed to ensure the positivity of execution intervals.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.