Embedding Dimensions of Simplicial Complexes on Few Vertices

Pub Date : 2023-03-28 DOI:10.1007/s00026-023-00644-4
Florian Frick, Mirabel Hu, Verity Scheel, Steven Simon
{"title":"Embedding Dimensions of Simplicial Complexes on Few Vertices","authors":"Florian Frick,&nbsp;Mirabel Hu,&nbsp;Verity Scheel,&nbsp;Steven Simon","doi":"10.1007/s00026-023-00644-4","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a simple characterization of simplicial complexes on few vertices that embed into the <i>d</i>-sphere. Namely, a simplicial complex on <span>\\(d+3\\)</span> vertices embeds into the <i>d</i>-sphere if and only if its non-faces do not form an intersecting family. As immediate consequences, we recover the classical van Kampen–Flores theorem and provide a topological extension of the Erdős–Ko–Rado theorem. By analogy with Fáry’s theorem for planar graphs, we show in addition that such complexes satisfy the rigidity property that continuous and linear embeddability are equivalent.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-023-00644-4.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00644-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We provide a simple characterization of simplicial complexes on few vertices that embed into the d-sphere. Namely, a simplicial complex on \(d+3\) vertices embeds into the d-sphere if and only if its non-faces do not form an intersecting family. As immediate consequences, we recover the classical van Kampen–Flores theorem and provide a topological extension of the Erdős–Ko–Rado theorem. By analogy with Fáry’s theorem for planar graphs, we show in addition that such complexes satisfy the rigidity property that continuous and linear embeddability are equivalent.

分享
查看原文
少量点上简单复合体的嵌入维数
我们提供了嵌入d球面的几个顶点上的单纯复形的一个简单表征。也就是说,在\(d+3\)顶点上的单纯复形嵌入到d球面中,当且仅当其非面不形成相交族。作为直接结果,我们恢复了经典的van Kampen–Flores定理,并提供了Erdõs–Ko–Rado定理的拓扑扩展。通过与平面图的Fáry定理的类比,我们还证明了这种复形满足连续可嵌入性和线性可嵌入性等价的刚性性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信