{"title":"Slice holomorphic functions in the unit ball: boundedness of $L$-index in a direction and related properties","authors":"Andriy Ivanovych Bandura, T. Salo, O. Skaskiv","doi":"10.30970/ms.57.1.68-78","DOIUrl":null,"url":null,"abstract":"Let $\\mathbf{b}\\in\\mathbb{C}^n\\setminus\\{\\mathbf{0}\\}$ be a fixed direction. We consider slice holomorphic functions of several complex variables in the unit ball, i.e. we study functions which are analytic in intersection of every slice $\\{z^0+t\\mathbf{b}: t\\in\\mathbb{C}\\}$ with the unit ball $\\mathbb{B}^n=\\{z\\in\\mathbb{C}^: \\ |z|:=\\sqrt{|z|_1^2+\\ldots+|z_n|^2}<1\\}$ for any $z^0\\in\\mathbb{B}^n$. For this class of functions we consider the concept of boundedness of $L$-index in the direction $\\mathbf{b},$ where $\\mathbf{L}: \\mathbb{B}^n\\to\\mathbb{R}_+$ is a positive continuous function such that $L(z)>\\frac{\\beta|\\mathbf{b}|}{1-|z|}$ and $\\beta>1$ is some constant.For functions from this class we deduce analog of Hayman's Theorem. It is criterion useful in applications todifferential equations. We introduce a concept of function having bounded value $L$-distribution in direction forthe slice holomorphic functions in the unit ball. It is proved that slice holomorphic function in the unit ball has bounded value $L$-distribution in a direction if and only if its directional derivative has bounded $L$-index in the same direction. Other propositions concern existence theorems. We show that for any slice holomorphic function $F$ with bounded multiplicities of zeros on any slice in the fixed direction there exists such a positive continuous function $L$that the function $F$ has bounded $L$-index in the direction.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.57.1.68-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$ be a fixed direction. We consider slice holomorphic functions of several complex variables in the unit ball, i.e. we study functions which are analytic in intersection of every slice $\{z^0+t\mathbf{b}: t\in\mathbb{C}\}$ with the unit ball $\mathbb{B}^n=\{z\in\mathbb{C}^: \ |z|:=\sqrt{|z|_1^2+\ldots+|z_n|^2}<1\}$ for any $z^0\in\mathbb{B}^n$. For this class of functions we consider the concept of boundedness of $L$-index in the direction $\mathbf{b},$ where $\mathbf{L}: \mathbb{B}^n\to\mathbb{R}_+$ is a positive continuous function such that $L(z)>\frac{\beta|\mathbf{b}|}{1-|z|}$ and $\beta>1$ is some constant.For functions from this class we deduce analog of Hayman's Theorem. It is criterion useful in applications todifferential equations. We introduce a concept of function having bounded value $L$-distribution in direction forthe slice holomorphic functions in the unit ball. It is proved that slice holomorphic function in the unit ball has bounded value $L$-distribution in a direction if and only if its directional derivative has bounded $L$-index in the same direction. Other propositions concern existence theorems. We show that for any slice holomorphic function $F$ with bounded multiplicities of zeros on any slice in the fixed direction there exists such a positive continuous function $L$that the function $F$ has bounded $L$-index in the direction.