Boundary values in spaces spanned by rational functions and the index of invariant subspaces

IF 1.5 1区 数学 Q1 MATHEMATICS
J. Brennan
{"title":"Boundary values in spaces spanned by rational functions and the index of invariant subspaces","authors":"J. Brennan","doi":"10.1112/plms.12433","DOIUrl":null,"url":null,"abstract":"Let μ$\\mu$ be a positive compactly supported measure in the complex plane C$\\mathbb {C}$ , and for each p,1⩽p<∞$p,1\\leqslant p<\\infty$ , let Hp(μ)$H^p(\\mu )$ be the closed subspace of Lp(μ)$L^p(\\mu )$ spanned by the polynomials. In 1991, Thomson gave a complete description of its structure, expressing Hp(μ)$H^p(\\mu )$ as the direct sum of invariant subspaces, all but one of which is irreducible in the sense that it contains no non‐trivial characteristic function. Years later, Aleman, Richter and Sundberg gave a more detailed analysis of the invariant subspaces in any irreducible summand. Here we discuss the extent to which those earlier results can be extended to Rp(μ)$R^p(\\mu )$ , the closed subspace of Lp(μ)$L^p(\\mu )$ spanned by the rational functions having no poles on the support of μ$\\mu$ , by first establishing the existence of boundary values in these spaces. Our results all depend on the semiadditivity of analytic capacity, and ultimately on some form of the F. and M. Riesz theorem.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12433","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let μ$\mu$ be a positive compactly supported measure in the complex plane C$\mathbb {C}$ , and for each p,1⩽p<∞$p,1\leqslant p<\infty$ , let Hp(μ)$H^p(\mu )$ be the closed subspace of Lp(μ)$L^p(\mu )$ spanned by the polynomials. In 1991, Thomson gave a complete description of its structure, expressing Hp(μ)$H^p(\mu )$ as the direct sum of invariant subspaces, all but one of which is irreducible in the sense that it contains no non‐trivial characteristic function. Years later, Aleman, Richter and Sundberg gave a more detailed analysis of the invariant subspaces in any irreducible summand. Here we discuss the extent to which those earlier results can be extended to Rp(μ)$R^p(\mu )$ , the closed subspace of Lp(μ)$L^p(\mu )$ spanned by the rational functions having no poles on the support of μ$\mu$ , by first establishing the existence of boundary values in these spaces. Our results all depend on the semiadditivity of analytic capacity, and ultimately on some form of the F. and M. Riesz theorem.
有理函数空间中的边值与不变子空间的索引
设μ$\mu$是复平面C$\mathbb{C}$中的正紧支持测度,并且对于每个p,1⩽p<∞$p,1\leqslant p<\infty$,设Hp(μ)$H^p(\mu)$是Lp(μ。1991年,Thomson给出了其结构的完整描述,将Hp(μ)$H^p(\mu)$表示为不变子空间的直和,除一个子空间外,所有子空间都是不可约的,因为它不包含非平凡的特征函数。几年后,Aleman、Richter和Sundberg对任何不可约和中的不变子空间进行了更详细的分析。在这里,我们讨论了这些早期结果可以扩展到Rp(μ)$R^p(\mu)$的程度,通过首先建立这些空间中边值的存在性,Lp(μ)$L^p(\mau)$的闭子空间由在μ$\mu$的支持上没有极点的有理函数跨越。我们的结果都取决于解析容量的半可加性,并最终取决于F.和M.Riesz定理的某种形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信