Anna Pajor, Justyna Wróblewska, Łukasz Kwiatkowski, Jacek Osiewalski
{"title":"Hybrid SV-GARCH, t-GARCH and Markov-switching covariance structures in VEC models—Which is better from a predictive perspective?","authors":"Anna Pajor, Justyna Wróblewska, Łukasz Kwiatkowski, Jacek Osiewalski","doi":"10.1111/insr.12546","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We compare predictive performance of a multitude of alternative Bayesian vector autoregression (VAR) models allowing for cointegration and time-varying conditional covariances, described by different multivariate stochastic volatility (MSV) models, including their hybrids with multivariate GARCH processes (MSV-MGARCH), as well as <i>t</i>-GARCH and Markov-switching structures. The forecast accuracy is evaluated mainly through predictive Bayes factors, but energy scores and the probability integral transform are also used. Two empirical studies, for the US and Polish economies, are based on a small model of monetary policy comprising inflation, unemployment and interest rate. The results indicate that capturing conditional heteroskedasticity by some MSV-MGARCH specifications contributes the most to the forecasting power of the VAR/VEC model.</p>\n </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12546","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We compare predictive performance of a multitude of alternative Bayesian vector autoregression (VAR) models allowing for cointegration and time-varying conditional covariances, described by different multivariate stochastic volatility (MSV) models, including their hybrids with multivariate GARCH processes (MSV-MGARCH), as well as t-GARCH and Markov-switching structures. The forecast accuracy is evaluated mainly through predictive Bayes factors, but energy scores and the probability integral transform are also used. Two empirical studies, for the US and Polish economies, are based on a small model of monetary policy comprising inflation, unemployment and interest rate. The results indicate that capturing conditional heteroskedasticity by some MSV-MGARCH specifications contributes the most to the forecasting power of the VAR/VEC model.
期刊介绍:
International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.