Geodesics and isocline distributions in tangent bundles of nonflat Lorentzian-Heisenberg spaces

IF 0.8 4区 数学 Q2 MATHEMATICS
M. Altunbaş
{"title":"Geodesics and isocline distributions in tangent bundles of nonflat Lorentzian-Heisenberg spaces","authors":"M. Altunbaş","doi":"10.55730/1300-0098.3356","DOIUrl":null,"url":null,"abstract":": Let ( H 3 , g 1 ) and ( H 3 , g 2 ) be the Lorentzian-Heisenberg spaces with nonflat metrics g 1 and g 2 , and ( TH 3 , g s 1 ) , ( TH 3 , g s 2 ) be their tangent bundles with the Sasaki metric, respectively. In the present paper, we find nontotally geodesic distributions in tangent bundles by using lifts of contact forms from the base manifold H 3 . We give examples for totally geodesic but not isocline distributions. We study the geodesics of tangent bundles by considering horizontal and natural lifts of geodesics of the base manifold H 3 . We also investigate more general classes of geodesics which are not obtained from horizontal and natural lifts of geodesics.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3356","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

: Let ( H 3 , g 1 ) and ( H 3 , g 2 ) be the Lorentzian-Heisenberg spaces with nonflat metrics g 1 and g 2 , and ( TH 3 , g s 1 ) , ( TH 3 , g s 2 ) be their tangent bundles with the Sasaki metric, respectively. In the present paper, we find nontotally geodesic distributions in tangent bundles by using lifts of contact forms from the base manifold H 3 . We give examples for totally geodesic but not isocline distributions. We study the geodesics of tangent bundles by considering horizontal and natural lifts of geodesics of the base manifold H 3 . We also investigate more general classes of geodesics which are not obtained from horizontal and natural lifts of geodesics.
非平坦洛伦兹-海森堡空间切束中的测地线和等斜线分布
设(H3,g1)和(H3、g2)分别是具有非平面度量g1和g2的洛伦兹-海森堡空间,(TH3,gs1)和(TH3、gs2)分别是它们与Sasaki度量的切丛。本文利用基流形H3的接触形式的提升,得到切丛中的非完全测地分布。我们给出了完全测地线但不是等分线分布的例子。我们通过考虑基流形H3的测地线的水平提升和自然提升来研究切丛的测地线。我们还研究了更一般的测地线类,这些测地线类不是从测地线的水平和自然提升中获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信