Extremal bounds for Dirichlet polynomials with random multiplicative coefficients

IF 0.7 3区 数学 Q2 MATHEMATICS
Jacques Benatar, Alon Nishry
{"title":"Extremal bounds for Dirichlet polynomials with random multiplicative coefficients","authors":"Jacques Benatar, Alon Nishry","doi":"10.4064/sm220829-6-3","DOIUrl":null,"url":null,"abstract":"For $X(n)$ a Steinhaus random multiplicative function, we study the maximal size of the random Dirichlet polynomial $$ D_N(t) = \\frac1{\\sqrt{N}} \\sum_{n \\leq N} X(n) n^{it}, $$ with $t$ in various ranges. In particular, for fixed $C>0$ and any small $\\varepsilon>0$ we show that, with high probability, $$ \\exp( (\\log N)^{1/2-\\varepsilon} ) \\ll \\sup_{|t| \\leq N^C} |D_N(t)| \\ll \\exp( (\\log N)^{1/2+\\varepsilon}). $$","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm220829-6-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

For $X(n)$ a Steinhaus random multiplicative function, we study the maximal size of the random Dirichlet polynomial $$ D_N(t) = \frac1{\sqrt{N}} \sum_{n \leq N} X(n) n^{it}, $$ with $t$ in various ranges. In particular, for fixed $C>0$ and any small $\varepsilon>0$ we show that, with high probability, $$ \exp( (\log N)^{1/2-\varepsilon} ) \ll \sup_{|t| \leq N^C} |D_N(t)| \ll \exp( (\log N)^{1/2+\varepsilon}). $$
随机乘法系数Dirichlet多项式的极值界
对于$X(n)$a Steinhaus随机乘法函数,我们研究了随机狄利克雷多项式$$D_n(t)=\frac1{\sqrt{n}}\sum_{n\leq n}X(n,n)n^{it},$$的最大大小,$t$在不同范围内。特别地,对于固定的$C>0$和任何小的$\varepsilon>0$,我们以高概率证明了$$\exp((\log N)^{1/2-\varepsilon})\ll\sup_{|t|\leq N^C}|D_N(t)|\ll\exp($$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信