{"title":"Evaluation of GLDAS soil moisture seasonality in arid climates","authors":"R. Araki, Y. Mu, H. McMillan","doi":"10.1080/02626667.2023.2206032","DOIUrl":null,"url":null,"abstract":"ABSTRACT We evaluated the Global Land Data Assimilation System surface soil moisture product (GLDAS v. 2.1) against in situ soil moisture networks in arid climates in Australia and the United States, using common statistical metrics and seasonality metrics. Our results showed that GLDAS performed well (root mean square error (RMSE) = 0.100 m3/m3; unbiased RMSE (ubRMSE) = 0.060 m3/m3; correlation coefficient (R) = 0.555 on average) but systematically overestimated the soil moisture values (Bias = 0.067 m3/m3). The performance was better in Australian Oznet and the U.S. Climate Reference Network (USCRN), compared to the US Soil Climate Analysis Network (SCAN) network. In terms of seasonality, GLDAS soil moisture seasons were biased to start earlier; on average, drying and wetting transitions started 28 and 16 days earlier than in situ data, respectively. The end dates of GLDAS seasonal transitions showed good agreement with in situ data; the errors in transition timings were limited to within a week. This tendency is stronger in the US networks compared to the Australian network.","PeriodicalId":55042,"journal":{"name":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","volume":"68 1","pages":"1109 - 1126"},"PeriodicalIF":2.8000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02626667.2023.2206032","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT We evaluated the Global Land Data Assimilation System surface soil moisture product (GLDAS v. 2.1) against in situ soil moisture networks in arid climates in Australia and the United States, using common statistical metrics and seasonality metrics. Our results showed that GLDAS performed well (root mean square error (RMSE) = 0.100 m3/m3; unbiased RMSE (ubRMSE) = 0.060 m3/m3; correlation coefficient (R) = 0.555 on average) but systematically overestimated the soil moisture values (Bias = 0.067 m3/m3). The performance was better in Australian Oznet and the U.S. Climate Reference Network (USCRN), compared to the US Soil Climate Analysis Network (SCAN) network. In terms of seasonality, GLDAS soil moisture seasons were biased to start earlier; on average, drying and wetting transitions started 28 and 16 days earlier than in situ data, respectively. The end dates of GLDAS seasonal transitions showed good agreement with in situ data; the errors in transition timings were limited to within a week. This tendency is stronger in the US networks compared to the Australian network.
期刊介绍:
Hydrological Sciences Journal is an international journal focused on hydrology and the relationship of water to atmospheric processes and climate.
Hydrological Sciences Journal is the official journal of the International Association of Hydrological Sciences (IAHS).
Hydrological Sciences Journal aims to provide a forum for original papers and for the exchange of information and views on significant developments in hydrology worldwide on subjects including:
Hydrological cycle and processes
Surface water
Groundwater
Water resource systems and management
Geographical factors
Earth and atmospheric processes
Hydrological extremes and their impact
Hydrological Sciences Journal offers a variety of formats for paper submission, including original articles, scientific notes, discussions, and rapid communications.