{"title":"An intersection-theoretic proof of the Harer–Zagier fomula","authors":"A. Giacchetto, Danilo Lewa'nski, P. Norbury","doi":"10.14231/AG-2023-004","DOIUrl":null,"url":null,"abstract":"We provide an intersection-theoretic formula for the Euler characteristic of the moduli space of smooth curves. This formula reads purely in terms of Hodge integrals and, as a corollary, the standard calculus of tautological classes gives a new short proof of the Harer-Zagier formula. Our result is based on the Gauss-Bonnet formula, and on the observation that a certain parametrisation of the $\\Omega$-class - the Chern class of the universal $r$-th root of the twisted log canonical bundle - provides the Chern class of the log tangent bundle to the moduli space of smooth curves. Being $\\Omega$-classes by now employed in many enumerative problems, mostly recently found and at times surprisingly different from each other, we dedicate some work to produce an extensive list of their general properties: extending existing ones, finding new ones, and writing down some only known to the experts.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2023-004","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
We provide an intersection-theoretic formula for the Euler characteristic of the moduli space of smooth curves. This formula reads purely in terms of Hodge integrals and, as a corollary, the standard calculus of tautological classes gives a new short proof of the Harer-Zagier formula. Our result is based on the Gauss-Bonnet formula, and on the observation that a certain parametrisation of the $\Omega$-class - the Chern class of the universal $r$-th root of the twisted log canonical bundle - provides the Chern class of the log tangent bundle to the moduli space of smooth curves. Being $\Omega$-classes by now employed in many enumerative problems, mostly recently found and at times surprisingly different from each other, we dedicate some work to produce an extensive list of their general properties: extending existing ones, finding new ones, and writing down some only known to the experts.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.