M. Pratsovytyi, O. Baranovskyi, O. Bondarenko, S. Ratushniak
{"title":"One class of continuous locally complicated functions related to infinite-symbol $\\Phi$-representation of numbers","authors":"M. Pratsovytyi, O. Baranovskyi, O. Bondarenko, S. Ratushniak","doi":"10.30970/ms.59.2.123-131","DOIUrl":null,"url":null,"abstract":"In the paper, we introduce and study a massive class of continuous functions defined on the interval $(0;1)$ using a special encoding (representation) of the argument with an alphabet $ \\mathbb{Z}=\\{0,\\pm 1, \\pm 2,...\\}$ and base $\\tau=\\frac{\\sqrt{5}-1}{2}$: $\\displaystyle x=b_{\\alpha_1}+\\sum\\limits_{k=2}^{m}(b_{\\alpha_k}\\prod\\limits_{i=1}^{k-1}\\Theta_{\\alpha_i})\\equiv\\Delta^{\\Phi}_{\\alpha_1\\alpha_2...\\alpha_m(\\emptyset)},\\quadx=b_{\\alpha_1}+\\sum\\limits_{k=2}^{\\infty}(b_{\\alpha_k}\\prod\\limits_{i=1}^{k-1}\\Theta_{\\alpha_i})\\equiv\\Delta^{\\Phi}_{\\alpha_1\\alpha_2...\\alpha_n...},$ \nwhere $\\alpha_n\\in \\mathbb{Z}$, $\\Theta_n=\\Theta_{-n}=\\tau^{3+|n|}$,$b_n=\\sum\\limits_{i=-\\infty}^{n-1}\\Theta_i=\\begin{cases}\\tau^{2-n}, & \\mbox{if } n\\leq0, \\\\1-\\tau^{n+1}, & \\mbox{if } n\\geq 0.\\end{cases}$ \nThe function $f$, which is the main object of the study, is defined by equalities$\\displaystyle\\begin{cases}f(x=\\Delta^{\\Phi}_{i_1...i_k...})=\\sigma_{i_11}+\\sum\\limits_{k=2}^{\\infty}\\sigma_{i_kk}\\prod\\limits_{j=1}^{k-1}p_{i_jj}\\equiv\\Delta_{i_1...i_k...},\\\\f(x=\\Delta^{\\Phi}_{i_1...i_m(\\emptyset)})=\\sigma_{i_11}+\\sum\\limits_{k=2}^{m}\\sigma_{i_kk}\\prod\\limits_{j=1}^{k-1}p_{i_jj}\\equiv\\Delta_{i_1...i_m(\\emptyset)},\\end{cases}$ where an infinite matrix $||p_{ik}||$ ($i\\in \\mathbb{Z}$, $k\\in \\mathbb N$) satisfies the conditions \n1) $|p_{ik}|<1$ $\\forall i\\in \\mathbb{Z}$, $\\forall k\\in \\mathbb N;\\quad$2) $\\sum\\limits_{i\\in \\mathbb{Z}}p_{ik}=1$ $\\forall k\\in\\mathbb N$; \n3) $0<\\sum\\limits_{k=2}^{\\infty}\\prod\\limits_{j=1}^{k-1}p_{i_jj}<\\infty~~\\forall (i_j)\\in L;\\quad$4) $0<\\sigma_{ik}\\equiv\\sum\\limits_{j=-\\infty}^{i-1}p_{jk}<1$ $\\forall i\\in \\mathbb Z, \\forall k\\in \\mathbb N.$ \nThis class of functions contains monotonic, non-monotonic, nowhere monotonic functions and functionswithout monotonicity intervals except for constancy intervals, Cantor-type andquasi-Cantor-type functions as well as functions of bounded and unbounded variation. The criteria for the function $f$ to be monotonic and to be a function of the Cantor type as well as the criterion of nowhere monotonicity are proved. Expressions for the Lebesgue measure of the set of non-constancy of the function and for the variation of the function are found. Necessary and sufficient conditions for thefunction to be of unbounded variation are established.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.2.123-131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
In the paper, we introduce and study a massive class of continuous functions defined on the interval $(0;1)$ using a special encoding (representation) of the argument with an alphabet $ \mathbb{Z}=\{0,\pm 1, \pm 2,...\}$ and base $\tau=\frac{\sqrt{5}-1}{2}$: $\displaystyle x=b_{\alpha_1}+\sum\limits_{k=2}^{m}(b_{\alpha_k}\prod\limits_{i=1}^{k-1}\Theta_{\alpha_i})\equiv\Delta^{\Phi}_{\alpha_1\alpha_2...\alpha_m(\emptyset)},\quadx=b_{\alpha_1}+\sum\limits_{k=2}^{\infty}(b_{\alpha_k}\prod\limits_{i=1}^{k-1}\Theta_{\alpha_i})\equiv\Delta^{\Phi}_{\alpha_1\alpha_2...\alpha_n...},$
where $\alpha_n\in \mathbb{Z}$, $\Theta_n=\Theta_{-n}=\tau^{3+|n|}$,$b_n=\sum\limits_{i=-\infty}^{n-1}\Theta_i=\begin{cases}\tau^{2-n}, & \mbox{if } n\leq0, \\1-\tau^{n+1}, & \mbox{if } n\geq 0.\end{cases}$
The function $f$, which is the main object of the study, is defined by equalities$\displaystyle\begin{cases}f(x=\Delta^{\Phi}_{i_1...i_k...})=\sigma_{i_11}+\sum\limits_{k=2}^{\infty}\sigma_{i_kk}\prod\limits_{j=1}^{k-1}p_{i_jj}\equiv\Delta_{i_1...i_k...},\\f(x=\Delta^{\Phi}_{i_1...i_m(\emptyset)})=\sigma_{i_11}+\sum\limits_{k=2}^{m}\sigma_{i_kk}\prod\limits_{j=1}^{k-1}p_{i_jj}\equiv\Delta_{i_1...i_m(\emptyset)},\end{cases}$ where an infinite matrix $||p_{ik}||$ ($i\in \mathbb{Z}$, $k\in \mathbb N$) satisfies the conditions
1) $|p_{ik}|<1$ $\forall i\in \mathbb{Z}$, $\forall k\in \mathbb N;\quad$2) $\sum\limits_{i\in \mathbb{Z}}p_{ik}=1$ $\forall k\in\mathbb N$;
3) $0<\sum\limits_{k=2}^{\infty}\prod\limits_{j=1}^{k-1}p_{i_jj}<\infty~~\forall (i_j)\in L;\quad$4) $0<\sigma_{ik}\equiv\sum\limits_{j=-\infty}^{i-1}p_{jk}<1$ $\forall i\in \mathbb Z, \forall k\in \mathbb N.$
This class of functions contains monotonic, non-monotonic, nowhere monotonic functions and functionswithout monotonicity intervals except for constancy intervals, Cantor-type andquasi-Cantor-type functions as well as functions of bounded and unbounded variation. The criteria for the function $f$ to be monotonic and to be a function of the Cantor type as well as the criterion of nowhere monotonicity are proved. Expressions for the Lebesgue measure of the set of non-constancy of the function and for the variation of the function are found. Necessary and sufficient conditions for thefunction to be of unbounded variation are established.
在本文中,我们引入并研究了一类在区间$(0;1)$上定义的连续函数,使用字母表$\mathbb{Z}=\{0,\pm1,\pm2,…\}$和基$\tau=\frac{\sqrt的自变量的特殊编码(表示){5}-1}{2} $:$\displaystyle x=b_{k-1}\Theta_{\alpha_i})\equiv\Delta^{\Phi}_{\alpha_1\alpha_2…\alpha_n…},$其中$\alpha_n\in\mathbb{Z}$,$\Theta_n=\Theta_{-n}=\tau^{3+|n|}$,$b_n=\sum\limits_{i=-\infty}^{n-1}\Theta_i=\begin{cases}\tau^{2-n},&&mbox{if}n\leq0,\\1-\tau ^{n+1},\\mbox{if}n\geq 0.\end{casses}$函数$f$是研究的主要对象,由等式$\displaystyle\boot定义{cases}f(x=\Δ^{\Phi}_{i_1…i_k…}^{k-1}p_{i_jj}\equiv\Delta_{i_1…i_k…},\\f(x=\Delta^{\Phi}_{i1…i_m(\pemptyset)}^{k-1}p_{i_jj}\equiv\Delta_{i_1…i_m(\emptyset)},\end{cases}$其中一个无限矩阵$|p_{ik}|$($i\in\mathbb{Z}$,$k\in\math bb N$)满足条件1)$|p_{ik}|<1$\ for all i\in\athbb{Z}$,$\ for ll k\in\ath bb N;\quad$2)$\sum\limits_{i\in\mathbb{Z}}p_{ik}=1$$\对于所有k\in\math bb N$;3) $0^{k-1}p_{i_jj}<\infty~~\forall(i_j)\在L中;\quad$4)$0^{i-1}p_{jk}<1$$\for all i\in\mathbb Z,\for all k\in\math bb N$这类函数包含单调、非单调、无单调函数和除恒定区间、Cantor型和准Cantor型函数以及有界和无界变差函数外没有单调区间的函数。证明了函数$f$是单调的、是Cantor型函数的判据以及无单调性的判据。得到了函数的非恒定集的Lebesgue测度和函数的变分的表达式。建立了函数具有无界变分的充要条件。