Lagrangian Distributions and Fourier Integral Operators with Quadratic Phase Functions and Shubin Amplitudes

IF 1.1 2区 数学 Q1 MATHEMATICS
M. Cappiello, R. Schulz, P. Wahlberg
{"title":"Lagrangian Distributions and Fourier Integral Operators with Quadratic Phase Functions and Shubin Amplitudes","authors":"M. Cappiello, R. Schulz, P. Wahlberg","doi":"10.4171/PRIMS/56-3-5","DOIUrl":null,"url":null,"abstract":"We study Fourier integral operators with Shubin amplitudes and quadratic phase functions associated to twisted graph Lagrangians with respect to symplectic matrices. We factorize such an operator as a pseudodifferential operator and a metaplectic operator. Extending the conormal distributions adapted to the Shubin calculus, we define an adapted notion of Lagrangian tempered distribution. We show that the kernels of Fourier integral operators are identical to Lagrangian distributions with respect to twisted graph Lagrangians.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/PRIMS/56-3-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We study Fourier integral operators with Shubin amplitudes and quadratic phase functions associated to twisted graph Lagrangians with respect to symplectic matrices. We factorize such an operator as a pseudodifferential operator and a metaplectic operator. Extending the conormal distributions adapted to the Shubin calculus, we define an adapted notion of Lagrangian tempered distribution. We show that the kernels of Fourier integral operators are identical to Lagrangian distributions with respect to twisted graph Lagrangians.
具有二次相位函数和Shubin振幅的拉格朗日分布和傅立叶积分算子
研究了具有舒宾幅值的傅里叶积分算子和关于辛矩阵的扭曲图拉格朗日的二次相函数。我们将这样的算子分解为伪微分算子和元微分算子。对适合于舒宾演算的正态分布进行扩展,定义了适合于舒宾演算的拉格朗日调和分布的概念。我们证明了傅里叶积分算子的核与关于扭曲图拉格朗日的拉格朗日分布是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信