{"title":"On the optimal stopping with incomplete data","authors":"Petre Babilua, Besarion Dochviri, Zaza Khechinashvili","doi":"10.1016/j.trmi.2018.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>The Kalman–Bucy continuous model of partially observable stochastic processes is considered. The problem of optimal stopping of a stochastic process with incomplete data is reduced to the problem of optimal stopping with complete data. The convergence of payoffs is proved when <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>→</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>→</mo><mn>0</mn></math></span>, where <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></math></span> and <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are small perturbation parameters of the non observable and observable processes respectively.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 3","pages":"Pages 332-336"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.07.006","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809218301272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
The Kalman–Bucy continuous model of partially observable stochastic processes is considered. The problem of optimal stopping of a stochastic process with incomplete data is reduced to the problem of optimal stopping with complete data. The convergence of payoffs is proved when , where and are small perturbation parameters of the non observable and observable processes respectively.