Prime power order circulant determinants

IF 0.6 Q3 MATHEMATICS
Michael J. Mossinghoff, Christopher G. Pinner
{"title":"Prime power order circulant determinants","authors":"Michael J. Mossinghoff, Christopher G. Pinner","doi":"10.1215/00192082-10596890","DOIUrl":null,"url":null,"abstract":"Newman showed that for primes $p\\geq 5$ an integral circulant determinant of prime power order $p^t$ cannot take the value $p^{t+1}$ once $t\\geq 2.$ We show that many other values are also excluded. In particular, we show that $p^{2t}$ is the smallest power of $p$ attained for any $t\\geq 3$, $p\\geq 3.$ We demonstrate the complexity involved by giving a complete description of the $25\\times 25$ and $27\\times 27$ integral circulant determinants. The former case involves a partition of the primes that are $1\\bmod5$ into two sets, Tanner's \\textit{perissads} and \\textit{artiads}, which were later characterized by E. Lehmer.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10596890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Newman showed that for primes $p\geq 5$ an integral circulant determinant of prime power order $p^t$ cannot take the value $p^{t+1}$ once $t\geq 2.$ We show that many other values are also excluded. In particular, we show that $p^{2t}$ is the smallest power of $p$ attained for any $t\geq 3$, $p\geq 3.$ We demonstrate the complexity involved by giving a complete description of the $25\times 25$ and $27\times 27$ integral circulant determinants. The former case involves a partition of the primes that are $1\bmod5$ into two sets, Tanner's \textit{perissads} and \textit{artiads}, which were later characterized by E. Lehmer.
幂次循环行列式
Newman证明了对于素数$p\geq 5$,一个素数幂次的积分循环行列式$p^t$不能取值$p^{t+1}$,一旦$t\geq 2.$,我们证明了许多其他值也被排除在外。特别地,我们表明$p^{2t}$是对于任何$t\geq 3$, $p\geq 3.$获得的$p$的最小幂。我们通过给出$25\times 25$和$27\times 27$积分循环行列式的完整描述来证明所涉及的复杂性。前一种情况涉及将$1\bmod5$的素数划分为两个集合,Tanner的\textit{perisads}和\textit{artiads},后来由E. Lehmer描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信