Weighted Lasso Subsampling for HighDimensional Regression

IF 0.6 Q4 STATISTICS & PROBABILITY
Hassan S. Uraibi
{"title":"Weighted Lasso Subsampling for HighDimensional Regression","authors":"Hassan S. Uraibi","doi":"10.1285/I20705948V12N1P69","DOIUrl":null,"url":null,"abstract":"Lasso regression methods are widely used for a number of scientic applications.Many practitioners of statistics were not aware that a small changein the data would results in unstable Lasso solution path. For instance, inthe presence of outlying observations, Lasso perhaps leads the increase inthe percentage of the false selection rate of predictors. On the other hand,the discussions on determining an optimal shrinkage parameter of Lasso isstill ongoing. Therefore, this paper proposed a robust algorithm to tacklethe instability of Lasso in the presence of outliers. A new weight function isproposed to overcome the problem of outlying observations. The weightedobservations are subsamples for a certain number of subsamples to controlthe false Lasso selection. The simulation study has been carried out and usesreal data to assess the performance of our proposed algorithm. Consequently,the proposed method shows more eciency than LAD-Lasso and weightedLAD-Lasso and more reliable results.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"12 1","pages":"69-84"},"PeriodicalIF":0.6000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N1P69","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N1P69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

Lasso regression methods are widely used for a number of scientic applications.Many practitioners of statistics were not aware that a small changein the data would results in unstable Lasso solution path. For instance, inthe presence of outlying observations, Lasso perhaps leads the increase inthe percentage of the false selection rate of predictors. On the other hand,the discussions on determining an optimal shrinkage parameter of Lasso isstill ongoing. Therefore, this paper proposed a robust algorithm to tacklethe instability of Lasso in the presence of outliers. A new weight function isproposed to overcome the problem of outlying observations. The weightedobservations are subsamples for a certain number of subsamples to controlthe false Lasso selection. The simulation study has been carried out and usesreal data to assess the performance of our proposed algorithm. Consequently,the proposed method shows more eciency than LAD-Lasso and weightedLAD-Lasso and more reliable results.
高维回归的加权Lasso子抽样
套索回归方法在许多科学应用中被广泛使用。许多统计从业人员没有意识到,数据的微小变化会导致Lasso解路径不稳定。例如,在存在离群观测的情况下,拉索可能导致预测者错误选择率的百分比增加。另一方面,关于确定拉索的最佳收缩参数的讨论仍在进行中。因此,本文提出了一种鲁棒算法来处理存在异常值时Lasso的不稳定性。提出了一种新的权函数来克服离群观测值的问题。加权观测值是一定数量的子样本的子样本,以控制假套索选择。仿真研究已经进行,并使用真实数据来评估我们提出的算法的性能。结果表明,该方法比LAD-Lasso和加权LAD-Lasso算法效率更高,结果更可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信