J. Dockter, Pietro Paparella, R. L. Perry, Jonathan D Ta
{"title":"Kronecker products of Perron similarities","authors":"J. Dockter, Pietro Paparella, R. L. Perry, Jonathan D Ta","doi":"10.13001/ela.2022.6697","DOIUrl":null,"url":null,"abstract":"An invertible matrix is called a Perron similarity if one of its columns and the corresponding row of its inverse are both nonnegative or both nonpositive. Such matrices are of relevance and import in the study of the nonnegative inverse eigenvalue problem. In this work, Kronecker products of Perron similarities are examined and used to construct ideal Perron similarities all of whose rows are extremal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An invertible matrix is called a Perron similarity if one of its columns and the corresponding row of its inverse are both nonnegative or both nonpositive. Such matrices are of relevance and import in the study of the nonnegative inverse eigenvalue problem. In this work, Kronecker products of Perron similarities are examined and used to construct ideal Perron similarities all of whose rows are extremal.