Ebrahim Mohiuddin, Masikana M. Mdleleni, David Key
{"title":"Catalytic cracking of naphtha: The effect of Fe and Cr impregnated ZSM-5 on olefin selectivity","authors":"Ebrahim Mohiuddin, Masikana M. Mdleleni, David Key","doi":"10.1007/s13203-018-0200-2","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on the modification of ZSM-5 in order to enhance the catalytic cracking of refinery naphtha to produce light olefins. ZSM-5 was metal modified using different loadings (0.5–5?wt%) of Fe and Cr via the impregnation method. The metal modified ZSM-5 samples are compared and the effect of metal loading on the physicochemical properties and catalytic performance is investigated. Fe and Cr modification had an effect on both the physicochemical properties of the catalysts as well as catalytic activity and selectivity. Metal loading caused a decrease in the specific surface area which decreased further with increased metal loading. Fe had a greater effect on the total acidity in particular strong acid sites when compared to Cr. The optimum Fe loading was established which promoted selectivity to olefins, in particular propylene. Fe also had a dominant effect on the P/E ratio of which a remarkable ratio of five was achieved as well as enhanced the stability of the catalyst. Cr was found to be a good promoter for selectivity to BTX products with a two-fold increase observed when compared to Fe-modified catalysts.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"8 2","pages":"119 - 129"},"PeriodicalIF":0.1250,"publicationDate":"2018-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-018-0200-2","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-018-0200-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
This study focuses on the modification of ZSM-5 in order to enhance the catalytic cracking of refinery naphtha to produce light olefins. ZSM-5 was metal modified using different loadings (0.5–5?wt%) of Fe and Cr via the impregnation method. The metal modified ZSM-5 samples are compared and the effect of metal loading on the physicochemical properties and catalytic performance is investigated. Fe and Cr modification had an effect on both the physicochemical properties of the catalysts as well as catalytic activity and selectivity. Metal loading caused a decrease in the specific surface area which decreased further with increased metal loading. Fe had a greater effect on the total acidity in particular strong acid sites when compared to Cr. The optimum Fe loading was established which promoted selectivity to olefins, in particular propylene. Fe also had a dominant effect on the P/E ratio of which a remarkable ratio of five was achieved as well as enhanced the stability of the catalyst. Cr was found to be a good promoter for selectivity to BTX products with a two-fold increase observed when compared to Fe-modified catalysts.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.