D. Dhanapal, AnandaKumar Srinivasan, Manjumeena Rajarathinam, Alagar Muthukaruppan
{"title":"Evaluation of augmented thermal, thermo-mechanical, mechanical properties of nano alumina reinforced TGDDM epoxy nanocomposites","authors":"D. Dhanapal, AnandaKumar Srinivasan, Manjumeena Rajarathinam, Alagar Muthukaruppan","doi":"10.1177/09540083221133986","DOIUrl":null,"url":null,"abstract":"N,N′-Tetraglycidyldiaminodiphenyl methane (TGDDM) was reinforced with various weight fractions (0.5, 1, and 1.5 wt%) of amine functionalized nano alumina (F-Al) were cured with diaminodiphenyl-methane (DDM). FT-IR analysis revealed that formation of functionalized nano alumina (F-Al) structure, was brought about via coupling agent APTES. Furthermore, the morphology of TGDDM epoxy nanocomposites was studied using X-ray Diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microscopic analysis and an atomic force microscope (AFM). We found a bonding relationship between TGDDM epoxy and F-Al in TGDDM/F-Al nanocomposites It was interesting to note that the values of tensile, flexural and impact strength of 1 wt% F-Al reinforced TGDDM epoxy nanocomposites were found to be 141.5, 192.5 MPa, and 92.4 J/m2, respectively., which resulted in a substantial improvement in the dynamic mechanical analysis (DMA) to 4.3 and 5.5 for 0.5 and 1 wt% F-Al reinforced TGDDM epoxy nanocomposites and the glass transition temperature (Tg) increased from 210°C to 225°C as the F-Al content increased. The initial degradation temperature (IDT) of 0.5, 1, and 1.5 wt% F-Al reinforced TGDDM epoxy nanocomposites were significantly enriched to 328°C, 345°C, and 335°C respectively from 290°C of neat (TGDDM) epoxy matrix. Likewise, the char yield for the neat (TGDDM) epoxy matrix was 13% and that for 0.5, 1, and 1.5 wt% F-Al reinforced TGDDM epoxy nanocomposites were 17%, 25%, and 20% respectively. It is feasible to state unequivocally that considerable F-Al diffusion within the TGDDM epoxy can only occur at low weight percentages. The results clearly showed that F-Al reinforced TGDDM epoxy nanocomposites may be investigated for advanced high performance industrial engineering applications.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":"35 1","pages":"313 - 323"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083221133986","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
N,N′-Tetraglycidyldiaminodiphenyl methane (TGDDM) was reinforced with various weight fractions (0.5, 1, and 1.5 wt%) of amine functionalized nano alumina (F-Al) were cured with diaminodiphenyl-methane (DDM). FT-IR analysis revealed that formation of functionalized nano alumina (F-Al) structure, was brought about via coupling agent APTES. Furthermore, the morphology of TGDDM epoxy nanocomposites was studied using X-ray Diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microscopic analysis and an atomic force microscope (AFM). We found a bonding relationship between TGDDM epoxy and F-Al in TGDDM/F-Al nanocomposites It was interesting to note that the values of tensile, flexural and impact strength of 1 wt% F-Al reinforced TGDDM epoxy nanocomposites were found to be 141.5, 192.5 MPa, and 92.4 J/m2, respectively., which resulted in a substantial improvement in the dynamic mechanical analysis (DMA) to 4.3 and 5.5 for 0.5 and 1 wt% F-Al reinforced TGDDM epoxy nanocomposites and the glass transition temperature (Tg) increased from 210°C to 225°C as the F-Al content increased. The initial degradation temperature (IDT) of 0.5, 1, and 1.5 wt% F-Al reinforced TGDDM epoxy nanocomposites were significantly enriched to 328°C, 345°C, and 335°C respectively from 290°C of neat (TGDDM) epoxy matrix. Likewise, the char yield for the neat (TGDDM) epoxy matrix was 13% and that for 0.5, 1, and 1.5 wt% F-Al reinforced TGDDM epoxy nanocomposites were 17%, 25%, and 20% respectively. It is feasible to state unequivocally that considerable F-Al diffusion within the TGDDM epoxy can only occur at low weight percentages. The results clearly showed that F-Al reinforced TGDDM epoxy nanocomposites may be investigated for advanced high performance industrial engineering applications.
期刊介绍:
Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.