Analysis of Association between Caesarean Delivery and Gestational Diabetes Mellitus Using Machine Learning

N. Prema, M. Pushpalatha
{"title":"Analysis of Association between Caesarean Delivery and Gestational Diabetes Mellitus Using Machine Learning","authors":"N. Prema, M. Pushpalatha","doi":"10.46604/peti.2020.4740","DOIUrl":null,"url":null,"abstract":"The study aims to analyze the association between gestational diabetes mellitus (GDM) and other risk factors of cesarean delivery using machine learning (ML). The dataset used for the analysis is from the pregnancy risk assessment survey (PRAMS), considered in two scenarios, i.e., all the data is taken, and all the data of the women who developed GDM. Further, the data is developed in two groups Data-I and Data-II by considering multiparous and primiparous women details, respectively. The correlation analysis and major classification algorithms are applied to the data. It is founded that the top risk factors for the first time cesarean delivery are the age, height, weight, race of the women, presence of hypertension and gestational diabetes mellitus. The major risk factor for repeated cesarean delivery is the previous cesarean delivery. The presence of GDM is also one of the risk factors for cesarean delivery.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2020.4740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study aims to analyze the association between gestational diabetes mellitus (GDM) and other risk factors of cesarean delivery using machine learning (ML). The dataset used for the analysis is from the pregnancy risk assessment survey (PRAMS), considered in two scenarios, i.e., all the data is taken, and all the data of the women who developed GDM. Further, the data is developed in two groups Data-I and Data-II by considering multiparous and primiparous women details, respectively. The correlation analysis and major classification algorithms are applied to the data. It is founded that the top risk factors for the first time cesarean delivery are the age, height, weight, race of the women, presence of hypertension and gestational diabetes mellitus. The major risk factor for repeated cesarean delivery is the previous cesarean delivery. The presence of GDM is also one of the risk factors for cesarean delivery.
利用机器学习分析剖宫产与妊娠期糖尿病的关系
本研究旨在利用机器学习(ML)分析妊娠期糖尿病(GDM)与剖宫产其他危险因素之间的关系。用于分析的数据集来自妊娠风险评估调查(PRAMS),考虑了两种情况,即所有数据都是采集的,以及所有发生GDM的妇女的数据。此外,数据分为两组数据- 1和数据- 2,分别考虑了多产和初产妇女的细节。对数据进行了相关分析和主要分类算法。研究发现,首次剖宫产的主要危险因素为年龄、身高、体重、种族、高血压和妊娠期糖尿病。重复剖宫产的主要危险因素是既往剖宫产。GDM也是剖宫产的危险因素之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
12
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信