Homogenization and Correctors for Stochastic Hyperbolic Equations in Domains with Periodically Distributed Holes

IF 1 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mogtaba Mohammed, W. Khan
{"title":"Homogenization and Correctors for Stochastic Hyperbolic Equations in Domains with Periodically Distributed Holes","authors":"Mogtaba Mohammed, W. Khan","doi":"10.1142/s1756973721500086","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to present new results on homogenization and correctors for stochastic linear hyperbolic equations in periodically perforated domains with homogeneous Neumann conditions on the holes. The main tools are the periodic unfolding method, energy estimates, probabilistic and deterministic compactness results. The findings of this paper are stochastic counterparts of the celebrated work [D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains, Port. Math. (N.S.) 63 (2006) 467–496]. The convergence of the solution of the original problem to a homogenized problem with Dirichlet condition has been shown in suitable topologies. Homogenization and convergence of the associated energies results recover the work in [M. Mohammed and M. Sango, Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains, Asymptot. Anal. 97 (2016) 301–327]. In addition to that, we obtain corrector results.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1756973721500086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to present new results on homogenization and correctors for stochastic linear hyperbolic equations in periodically perforated domains with homogeneous Neumann conditions on the holes. The main tools are the periodic unfolding method, energy estimates, probabilistic and deterministic compactness results. The findings of this paper are stochastic counterparts of the celebrated work [D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains, Port. Math. (N.S.) 63 (2006) 467–496]. The convergence of the solution of the original problem to a homogenized problem with Dirichlet condition has been shown in suitable topologies. Homogenization and convergence of the associated energies results recover the work in [M. Mohammed and M. Sango, Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains, Asymptot. Anal. 97 (2016) 301–327]. In addition to that, we obtain corrector results.
周期分布孔域上随机双曲型方程的均匀化与校正
本文的目的是给出在孔上具有齐次Neumann条件的周期穿孔域中随机线性双曲方程的齐次化和校正器的新结果。主要工具是周期展开方法、能量估计、概率和确定性紧致性结果。本文的发现是著名工作[D.Cioranescu,P.Donato和R.Zaki,穿孔域中的周期展开方法,Port.Math.(N.S.)63(2006)467–496]的随机对应物。在适当的拓扑结构中,证明了原问题的解对具有Dirichlet条件的齐次问题的收敛性。相关能量的均化和收敛结果恢复了[M.Mhammed和M.Sango,穿孔域中双曲随机偏微分方程的Neumann问题的均化,Asympot.Anal.97(2016)301–327]中的工作。除此之外,我们还获得了校正器结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multiscale Modelling
Journal of Multiscale Modelling MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信