{"title":"Learning machine learning: On the political economy of big tech's online AI courses","authors":"Inga Luchs, C. Apprich, M. Broersma","doi":"10.1177/20539517231153806","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) algorithms are still a novel research object in the field of media studies. While existing research focuses on concrete software on the one hand and the socio-economic context of the development and use of these systems on the other, this paper studies online ML courses as a research object that has received little attention so far. By pursuing a walkthrough and critical discourse analysis of Google's Machine Learning Crash Course and IBM's introductory course to Machine Learning with Python, we not only shed light on the technical knowledge, assumptions, and dominant infrastructures of ML as a field of practice, but also on the economic interests of the companies providing the courses. We demonstrate how the online courses further support Google and IBM to consolidate and even expand their position of power by recruiting new AI talent and by securing their infrastructures and models to become the dominant ones. Further, we show how the companies not only influence greatly how ML is represented, but also how these representations in turn influence and direct current ML research and development, as well as the societal effects of their products. Here, they boast an image of fair and democratic artificial intelligence, which stands in stark contrast to the ubiquity of their corporate products and the advertised directives of efficiency and performativity the companies strive for. This underlines the need for alternative infrastructures and perspectives.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517231153806","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Machine learning (ML) algorithms are still a novel research object in the field of media studies. While existing research focuses on concrete software on the one hand and the socio-economic context of the development and use of these systems on the other, this paper studies online ML courses as a research object that has received little attention so far. By pursuing a walkthrough and critical discourse analysis of Google's Machine Learning Crash Course and IBM's introductory course to Machine Learning with Python, we not only shed light on the technical knowledge, assumptions, and dominant infrastructures of ML as a field of practice, but also on the economic interests of the companies providing the courses. We demonstrate how the online courses further support Google and IBM to consolidate and even expand their position of power by recruiting new AI talent and by securing their infrastructures and models to become the dominant ones. Further, we show how the companies not only influence greatly how ML is represented, but also how these representations in turn influence and direct current ML research and development, as well as the societal effects of their products. Here, they boast an image of fair and democratic artificial intelligence, which stands in stark contrast to the ubiquity of their corporate products and the advertised directives of efficiency and performativity the companies strive for. This underlines the need for alternative infrastructures and perspectives.
期刊介绍:
Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government.
BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices.
BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.