Forward variable selection for ultra-high dimensional quantile regression models

Pub Date : 2022-08-29 DOI:10.1007/s10463-022-00849-z
Toshio Honda, Chien-Tong Lin
{"title":"Forward variable selection for ultra-high dimensional quantile regression models","authors":"Toshio Honda,&nbsp;Chien-Tong Lin","doi":"10.1007/s10463-022-00849-z","DOIUrl":null,"url":null,"abstract":"<div><p>We propose forward variable selection procedures with a stopping rule for feature screening in ultra-high-dimensional quantile regression models. For such very large models, penalized methods do not work and some preliminary feature screening is necessary. We demonstrate the desirable theoretical properties of our forward procedures by taking care of uniformity w.r.t. subsets of covariates properly. The necessity of such uniformity is often overlooked in the literature. Our stopping rule suitably incorporates the model size at each stage. We also present the results of simulation studies and a real data application to show their good finite sample performances.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-022-00849-z.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00849-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose forward variable selection procedures with a stopping rule for feature screening in ultra-high-dimensional quantile regression models. For such very large models, penalized methods do not work and some preliminary feature screening is necessary. We demonstrate the desirable theoretical properties of our forward procedures by taking care of uniformity w.r.t. subsets of covariates properly. The necessity of such uniformity is often overlooked in the literature. Our stopping rule suitably incorporates the model size at each stage. We also present the results of simulation studies and a real data application to show their good finite sample performances.

分享
查看原文
超高维分位数回归模型的正向变量选择
我们提出了具有停止规则的变量选择程序,用于超高维分位数回归模型的特征筛选。对于这种非常大的模型,惩罚方法不起作用,有必要进行一些初步的特征筛选。通过适当地处理协变量子集的均匀性,我们证明了我们的正演过程的理想的理论性质。这种一致性的必要性在文献中常常被忽视。我们的停止规则适当地结合了每个阶段的模型大小。我们还给出了仿真研究和实际数据应用的结果,以证明它们具有良好的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信