{"title":"Comparison of Kriging and artificial neural network models for the prediction of spatial data","authors":"A. Tavassoli, Y. Waghei, A. Nazemi","doi":"10.1080/00949655.2021.1961140","DOIUrl":null,"url":null,"abstract":"The prediction of a spatial variable is of particular importance when analyzing spatial data. The main objective of this study is to evaluate and compare the performance of several prediction-based methods in spatial prediction through a simulation study. The studied methods include ordinary Kriging (OK), along with several neural network methods including Multi-Layer Perceptron network (MLP), Ensemble Neural Networks (ENN), and Radial Basis Function (RBF) network. We simulated several spatial datasets with three different scenarios due to changes in data stationarity and isotropy. The performance of methods was evaluated using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Concordance Correlation Coefficient (CCC) indexes. Although the results of the simulation study revealed that the performance of the neural network in spatial prediction is weaker than the Kriging method, but it can still be a good competitor for Kriging.","PeriodicalId":50040,"journal":{"name":"Journal of Statistical Computation and Simulation","volume":"92 1","pages":"352 - 369"},"PeriodicalIF":1.2000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Computation and Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00949655.2021.1961140","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
The prediction of a spatial variable is of particular importance when analyzing spatial data. The main objective of this study is to evaluate and compare the performance of several prediction-based methods in spatial prediction through a simulation study. The studied methods include ordinary Kriging (OK), along with several neural network methods including Multi-Layer Perceptron network (MLP), Ensemble Neural Networks (ENN), and Radial Basis Function (RBF) network. We simulated several spatial datasets with three different scenarios due to changes in data stationarity and isotropy. The performance of methods was evaluated using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Concordance Correlation Coefficient (CCC) indexes. Although the results of the simulation study revealed that the performance of the neural network in spatial prediction is weaker than the Kriging method, but it can still be a good competitor for Kriging.
期刊介绍:
Journal of Statistical Computation and Simulation ( JSCS ) publishes significant and original work in areas of statistics which are related to or dependent upon the computer.
Fields covered include computer algorithms related to probability or statistics, studies in statistical inference by means of simulation techniques, and implementation of interactive statistical systems.
JSCS does not consider applications of statistics to other fields, except as illustrations of the use of the original statistics presented.
Accepted papers should ideally appeal to a wide audience of statisticians and provoke real applications of theoretical constructions.