{"title":"Construction of Anti-EpCAM Drug-Loaded Immunomagnetic Balls and Its Application in Diagnosis of Breast Cancer","authors":"Anqi Li, L. Zuo","doi":"10.1142/S1793984419400063","DOIUrl":null,"url":null,"abstract":"Breast cancer has the highest mortality rate among all cancers of female. A major challenge the successful cancer treatment is the need for a highly effective drug carrier to provide high effective targeted delivery and diagnose double function. Magnetic Fe3O4 nanoparticles (MNs) were modified by hexadecyl-quaternized (carboxymethyl) chitosans (HQCMC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), distearoyl phosphoethanolamine-polyethylene glycol (DSPE-PEG) and anti-epithelial cell adhesion molecule (EpCAM) antibody. Docetaxel (DOX) was selected and encapsulated in PEG-EpCAM-Fe3O4 MNs (D-PEG-Ep-MNs). DOX encapsulation and loading efficiency was determined by high performance liquid chromatography (HPLC). The synthesized vehicle D-PEG-Ep-MNs was characterized using atomic force microscopy (AFM), Malvern particle size analyzer and Fourier transform infrared spectroscopy (FTIR). The results showed that PEG-Ep-MNs can be selected as a kind of safe, efficient and specific tumor targeted drug delivery.","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793984419400063","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793984419400063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3
Abstract
Breast cancer has the highest mortality rate among all cancers of female. A major challenge the successful cancer treatment is the need for a highly effective drug carrier to provide high effective targeted delivery and diagnose double function. Magnetic Fe3O4 nanoparticles (MNs) were modified by hexadecyl-quaternized (carboxymethyl) chitosans (HQCMC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), distearoyl phosphoethanolamine-polyethylene glycol (DSPE-PEG) and anti-epithelial cell adhesion molecule (EpCAM) antibody. Docetaxel (DOX) was selected and encapsulated in PEG-EpCAM-Fe3O4 MNs (D-PEG-Ep-MNs). DOX encapsulation and loading efficiency was determined by high performance liquid chromatography (HPLC). The synthesized vehicle D-PEG-Ep-MNs was characterized using atomic force microscopy (AFM), Malvern particle size analyzer and Fourier transform infrared spectroscopy (FTIR). The results showed that PEG-Ep-MNs can be selected as a kind of safe, efficient and specific tumor targeted drug delivery.