Growth of nonsymmetric operads

IF 1.2 2区 数学 Q1 MATHEMATICS
Zihao Qi, Yongjun Xu, James J. Zhang, Xiangui Zhao
{"title":"Growth of nonsymmetric operads","authors":"Zihao Qi, Yongjun Xu, James J. Zhang, Xiangui Zhao","doi":"10.1512/iumj.2023.72.9243","DOIUrl":null,"url":null,"abstract":"The paper concerns the Gelfand-Kirillov dimension and the generating series of nonsymmetric operads. An analogue of Bergman's gap theorem is proved, namely, no finitely generated locally finite nonsymmetric operad has Gelfand-Kirillov dimension strictly between $1$ and $2$. For every $r\\in \\{0\\}\\cup \\{1\\}\\cup [2,\\infty)$ or $r=\\infty$, we construct a single-element generated nonsymmetric operad with Gelfand-Kirillov dimension $r$. We also provide counterexamples to two expectations of Khoroshkin and Piontkovski about the generating series of operads.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9243","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

The paper concerns the Gelfand-Kirillov dimension and the generating series of nonsymmetric operads. An analogue of Bergman's gap theorem is proved, namely, no finitely generated locally finite nonsymmetric operad has Gelfand-Kirillov dimension strictly between $1$ and $2$. For every $r\in \{0\}\cup \{1\}\cup [2,\infty)$ or $r=\infty$, we construct a single-element generated nonsymmetric operad with Gelfand-Kirillov dimension $r$. We also provide counterexamples to two expectations of Khoroshkin and Piontkovski about the generating series of operads.
非对称轻歌剧的成长
本文讨论了GelfandKirillov维数和非对称操纵子的生成级数。证明了Bergman间隙定理的一个相似性,即没有有限生成的局部有限非对称操纵子的Gelfand Kirillov维数严格在$1$和$2$之间。对于每$r\in\{0\}\cup\{1\}\cup[2,\infty)$或$r=\infty$,我们构造了一个具有GelfandKirillov维数$r$的单元素生成的非对称轻歌剧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信