Design and Analysis of Urban Land Lease Price Predicting Model Using Batch Gradient Descent Algorithm

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
Kifle Berhane Niguse
{"title":"Design and Analysis of Urban Land Lease Price Predicting Model Using Batch Gradient Descent Algorithm","authors":"Kifle Berhane Niguse","doi":"10.4314/mejs.v15i1.7","DOIUrl":null,"url":null,"abstract":"Standard and econometric models are appropriate for causal relationships and interpretations among facets of the economy. But with prediction, they tend to over-fit samples and simplify poorly to new, undetected data. This paper presents a batch gradient algorithm for predicting the rice of land with large datasets. This paper uses a batch gradient descent algorithm to minimize the cost function,  iteratively with possible combinations of the number of iterations i=1500 and learning rates, of 0.01, 0.02, 0.03 for the linear regression case and i = 100, 0.3, 0.2, and 0.1 for the multiple regression case. The paper uses Octave-4.0.3(GUI) for implementing 129 samples of the lease bid price of Mekelle City as training sets and feature inputs of two and three for linear regression and multiple regressions. Using  = 0.01, the best fitting parameters found by training the dataset are with a cost of J=67.82. The model predicts with an accuracy of 92.6% using LR and 91.15% using MLR for a 315 m2 land size. As the learning rate increases, the fitting parameters increase and decrease respectively with an equal cost but the model’s prediction error increments slowly. With multiple regression, as the learning rate lowers, the model under fits prediction drastically (with an accuracy of 60%) with gradient descent and predicts with an accuracy of 91.5% with ordinary equations. So, prediction with ordinary equations provides the best fit for multiple regressions.","PeriodicalId":18948,"journal":{"name":"Momona Ethiopian Journal of Science","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Momona Ethiopian Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/mejs.v15i1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Standard and econometric models are appropriate for causal relationships and interpretations among facets of the economy. But with prediction, they tend to over-fit samples and simplify poorly to new, undetected data. This paper presents a batch gradient algorithm for predicting the rice of land with large datasets. This paper uses a batch gradient descent algorithm to minimize the cost function,  iteratively with possible combinations of the number of iterations i=1500 and learning rates, of 0.01, 0.02, 0.03 for the linear regression case and i = 100, 0.3, 0.2, and 0.1 for the multiple regression case. The paper uses Octave-4.0.3(GUI) for implementing 129 samples of the lease bid price of Mekelle City as training sets and feature inputs of two and three for linear regression and multiple regressions. Using  = 0.01, the best fitting parameters found by training the dataset are with a cost of J=67.82. The model predicts with an accuracy of 92.6% using LR and 91.15% using MLR for a 315 m2 land size. As the learning rate increases, the fitting parameters increase and decrease respectively with an equal cost but the model’s prediction error increments slowly. With multiple regression, as the learning rate lowers, the model under fits prediction drastically (with an accuracy of 60%) with gradient descent and predicts with an accuracy of 91.5% with ordinary equations. So, prediction with ordinary equations provides the best fit for multiple regressions.
基于批量梯度下降算法的城市土地租赁价格预测模型设计与分析
标准和计量经济模型适用于经济各方面之间的因果关系和解释。但在预测中,它们往往会过度拟合样本,对新的、未检测到的数据简化得很差。提出了一种用于大数据集土地水稻预测的批量梯度算法。本文使用批量梯度下降算法迭代最小化代价函数,迭代次数i=1500,学习率i= 0.01, 0.02, 0.03对于线性回归,i= 100, 0.3, 0.2, 0.1对于多元回归情况。本文使用Octave-4.0.3(GUI)实现Mekelle市租赁投标价格的129个样本作为训练集,并分别为2和3个特征输入进行线性回归和多元回归。使用= 0.01,通过训练数据集找到的最佳拟合参数的代价为J=67.82。对于315平方米的土地面积,该模型使用LR的预测精度为92.6%,使用MLR的预测精度为91.15%。随着学习率的增加,拟合参数分别以相等的代价增加和减少,但模型的预测误差缓慢增加。在多元回归中,随着学习率的降低,模型采用梯度下降法对预测进行了大幅度拟合(准确率为60%),采用普通方程预测准确率为91.5%。因此,用普通方程进行预测可以为多元回归提供最好的拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Momona Ethiopian Journal of Science
Momona Ethiopian Journal of Science MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
13
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信