S. Chakrabarti, V. S. Sunder, Upinder Kaur, Sapna Bala, Priyanka Sharma, Manjari Kiran, R. Rawal, S. Chakrabarti
{"title":"Identifying the mechanisms of α-synuclein-mediated cytotoxicity in Parkinson’s disease: new insights from a bioinformatics-based approach","authors":"S. Chakrabarti, V. S. Sunder, Upinder Kaur, Sapna Bala, Priyanka Sharma, Manjari Kiran, R. Rawal, S. Chakrabarti","doi":"10.2217/fnl-2020-0007","DOIUrl":null,"url":null,"abstract":"Aim: A large body of evidence has implicated the cytotoxicity of α-synuclein in Parkinson’s disease (PD). We planned to use a bioinformatics-based approach to gain further insight into this process. Materials & methods: Using STRING version 10, we identified interacting proteins of α-synuclein. Using α-synuclein and one of these interactors involved in apoptosis as query proteins, we identified other linked proteins. We further analyzed the interactions between some of these proteins by Protein–Protein Docking using ClusPro. Results: We identified BAX as an interacting protein of α-synuclein. Interactions of α-synuclein and BAX as well as BAX and BCL2L1 were determined. Conclusion: The interaction of α-synuclein and BAX could play a crucial role in the cell death process of PD where apoptosis and mitochondrial permeability transition-driven necrosis may coexist.","PeriodicalId":12606,"journal":{"name":"Future Neurology","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/fnl-2020-0007","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/fnl-2020-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Aim: A large body of evidence has implicated the cytotoxicity of α-synuclein in Parkinson’s disease (PD). We planned to use a bioinformatics-based approach to gain further insight into this process. Materials & methods: Using STRING version 10, we identified interacting proteins of α-synuclein. Using α-synuclein and one of these interactors involved in apoptosis as query proteins, we identified other linked proteins. We further analyzed the interactions between some of these proteins by Protein–Protein Docking using ClusPro. Results: We identified BAX as an interacting protein of α-synuclein. Interactions of α-synuclein and BAX as well as BAX and BCL2L1 were determined. Conclusion: The interaction of α-synuclein and BAX could play a crucial role in the cell death process of PD where apoptosis and mitochondrial permeability transition-driven necrosis may coexist.
期刊介绍:
The neurological landscape is changing rapidly. From the technological perspective, advanced molecular approaches and imaging modalities have greatly increased our understanding of neurological disease, with enhanced prospects for effective treatments in common but very serious disorders such as stroke, epilepsy, multiple sclerosis and Parkinson’s disease. Nevertheless, at the same time, the healthcare community is increasingly challenged by the rise in neurodegenerative diseases consequent upon demographic changes in developed countries.