Higher Fano manifolds

IF 0.6 4区 数学 Q3 MATHEMATICS
Carolina Araujo, Roya Beheshti, Ana-Maria Castravet, K. Jabbusch, Svetlana A. Makarova, Enrica Mazzon, Libby Taylor, Nived Viswanathan
{"title":"Higher Fano manifolds","authors":"Carolina Araujo, Roya Beheshti, Ana-Maria Castravet, K. Jabbusch, Svetlana A. Makarova, Enrica Mazzon, Libby Taylor, Nived Viswanathan","doi":"10.33044/revuma.2921","DOIUrl":null,"url":null,"abstract":". We address in this paper Fano manifolds with positive higher Chern characters, which are expected to enjoy stronger versions of several of the nice properties of Fano manifolds. For instance, they should be covered by higher dimensional rational varieties, and families of higher Fano manifolds over higher dimensional bases should admit meromorphic sections (modulo the Brauer obstruction). Aiming at finding new examples of higher Fano manifolds, we investigate positivity of higher Chern characters of rational homogeneous spaces. We determine which rational homogeneous spaces of Picard rank 1 have positive second Chern character, and show that the only rational homogeneous spaces of Picard rank 1 having positive second and third Chern characters are projective spaces and quadric hypersurfaces. We also classify Fano manifolds of large index having positive second and third Chern characters. We conclude by discussing conjectural characterizations of projective spaces and complete intersections in terms of these higher Fano conditions.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.2921","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

. We address in this paper Fano manifolds with positive higher Chern characters, which are expected to enjoy stronger versions of several of the nice properties of Fano manifolds. For instance, they should be covered by higher dimensional rational varieties, and families of higher Fano manifolds over higher dimensional bases should admit meromorphic sections (modulo the Brauer obstruction). Aiming at finding new examples of higher Fano manifolds, we investigate positivity of higher Chern characters of rational homogeneous spaces. We determine which rational homogeneous spaces of Picard rank 1 have positive second Chern character, and show that the only rational homogeneous spaces of Picard rank 1 having positive second and third Chern characters are projective spaces and quadric hypersurfaces. We also classify Fano manifolds of large index having positive second and third Chern characters. We conclude by discussing conjectural characterizations of projective spaces and complete intersections in terms of these higher Fano conditions.
较高的Fano歧管
. 在本文中,我们讨论了具有正的高Chern字符的Fano流形,它们有望具有Fano流形的几个优良性质的更强的版本。例如,它们应该被高维有理变体所覆盖,高维基上的高维范诺流形族应该允许亚纯截面(模取布劳尔阻塞)。为了寻找更高范诺流形的新例子,我们研究了有理齐次空间的更高陈恩特征的正性。我们确定了哪些Picard秩为1的有理齐次空间具有正的二次陈氏字符,并证明了唯一具有正的二次陈氏字符的Picard秩为1的有理齐次空间是投影空间和二次超曲面。我们还对具有正二陈和正三陈的大指标范诺流形进行了分类。最后,我们讨论了投影空间和完备交点在这些高范诺条件下的推测特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信