{"title":"Lehmann–Suwa residues of codimension one holomorphic foliations and applications","authors":"A. Fern'andez-P'erez, J. Tamara","doi":"10.4310/AJM.2020.V24.N4.A6","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{F}$ be a singular codimension one holomorphic foliation on a compact complex manifold $X$ of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of $\\mathcal{F}$ as multiples of complex numbers by integration currents along irreducible complex subvarieties of $X$. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann-Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface $M\\subset X$ tangent to $\\mathcal{F}$.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/AJM.2020.V24.N4.A6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Let $\mathcal{F}$ be a singular codimension one holomorphic foliation on a compact complex manifold $X$ of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of $\mathcal{F}$ as multiples of complex numbers by integration currents along irreducible complex subvarieties of $X$. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann-Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface $M\subset X$ tangent to $\mathcal{F}$.