A. Sulavko, P. Lozhnikov, A. Choban, D. Stadnikov, A. A. Nigrey, D. Inivatov
{"title":"Evaluation of EEG identification potential using statistical approach and convolutional neural networks","authors":"A. Sulavko, P. Lozhnikov, A. Choban, D. Stadnikov, A. A. Nigrey, D. Inivatov","doi":"10.31799/1684-8853-2020-6-37-49","DOIUrl":null,"url":null,"abstract":"Introduction: Electroencephalograms contain information about the individual characteristics of the brain activities and the psychophysiological state of a subject. Purpose: To evaluate the identification potential of EEG, and to develop methods for the identification of users, their psychophysiological states and activities performed on a computer by their EEGs using convolutional neural networks. Results: The information content of EEG rhythms was assessed from the viewpoint of the possibility to identify a person and his/her state. A high accuracy of determining the identity (98.5–99.99% for 10 electrodes, 96.47% for two electrodes Fp1 and Fp2) with a low transit time (2–2.5 s) was achieved. A significant decrease in accuracy was detected if the person was in different psychophysiological states during the training and testing. In earlier studies, this aspect was not given enough attention. A method is proposed for increasing the robustness of personality recognition in altered psychophysiological states. An accuracy of 82–94% was achieved in recognizing states of alcohol intoxication, drowsiness or physical fatigue, and of 77.8–98.72% in recognizing the user's activities (reading, typing or watching video). Practical relevance: The results can be applied in security and remote monitoring applications.","PeriodicalId":36977,"journal":{"name":"Informatsionno-Upravliaiushchie Sistemy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatsionno-Upravliaiushchie Sistemy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31799/1684-8853-2020-6-37-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
Introduction: Electroencephalograms contain information about the individual characteristics of the brain activities and the psychophysiological state of a subject. Purpose: To evaluate the identification potential of EEG, and to develop methods for the identification of users, their psychophysiological states and activities performed on a computer by their EEGs using convolutional neural networks. Results: The information content of EEG rhythms was assessed from the viewpoint of the possibility to identify a person and his/her state. A high accuracy of determining the identity (98.5–99.99% for 10 electrodes, 96.47% for two electrodes Fp1 and Fp2) with a low transit time (2–2.5 s) was achieved. A significant decrease in accuracy was detected if the person was in different psychophysiological states during the training and testing. In earlier studies, this aspect was not given enough attention. A method is proposed for increasing the robustness of personality recognition in altered psychophysiological states. An accuracy of 82–94% was achieved in recognizing states of alcohol intoxication, drowsiness or physical fatigue, and of 77.8–98.72% in recognizing the user's activities (reading, typing or watching video). Practical relevance: The results can be applied in security and remote monitoring applications.