Bhabha scattering and a special pencil of K3 surfaces

IF 1.2 3区 数学 Q1 MATHEMATICS
Dino Festi, D. Straten
{"title":"Bhabha scattering and a special pencil of K3 surfaces","authors":"Dino Festi, D. Straten","doi":"10.4310/CNTP.2019.V13.N2.A4","DOIUrl":null,"url":null,"abstract":"We study a pencil of K3 surfaces that appeared in the $2$-loop diagrams in Bhabha scattering. By analysing in detail the Picard lattice of the general and special members of the pencil, we identify the pencil with the celebrated Apery--Fermi pencil, that was related to Apery's proof of the irrationality of $\\zeta(3)$ through the work of F. Beukers, C. Peters and J. Stienstra. The same pencil appears miraculously in different and seemingly unrelated physical contexts.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2019.V13.N2.A4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

Abstract

We study a pencil of K3 surfaces that appeared in the $2$-loop diagrams in Bhabha scattering. By analysing in detail the Picard lattice of the general and special members of the pencil, we identify the pencil with the celebrated Apery--Fermi pencil, that was related to Apery's proof of the irrationality of $\zeta(3)$ through the work of F. Beukers, C. Peters and J. Stienstra. The same pencil appears miraculously in different and seemingly unrelated physical contexts.
Bhabha散射和K3表面的特殊铅笔
我们研究了在Bhabha散射的$2$-环图中出现的K3曲面铅笔。通过对铅笔一般成员和特殊成员的皮卡德格的详细分析,我们将铅笔与著名的阿佩里-费米铅笔相识别,这与阿佩里通过F. Beukers, C. Peters和J. Stienstra的工作证明$\zeta(3)$的无理性有关。同样一支铅笔奇迹般地出现在不同的、看似不相关的物理环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信