On the Efficiency Enhancement of an Actively Tunable MEMS Energy Harvesting Device

IF 1.9 Q3 ENGINEERING, MECHANICAL
Vibration Pub Date : 2022-09-06 DOI:10.3390/vibration5030035
M. Aliasghary, S. Azizi, H. Madinei, H. Haddad Khodaparast
{"title":"On the Efficiency Enhancement of an Actively Tunable MEMS Energy Harvesting Device","authors":"M. Aliasghary, S. Azizi, H. Madinei, H. Haddad Khodaparast","doi":"10.3390/vibration5030035","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an active control method to adjust the resonance frequency of a capacitive energy harvester. To this end, the resonance frequency of the harvester is tuned using an electrostatic force, which is actively controlled by a voltage source. The spring softening effect of the electrostatic force is used to accommodate the dominant frequency of the ambient mechanical vibration within the bandwidth of the resonance region. A single degree of freedom is considered, and the nonlinear equation of motion is numerically integrated over time. Using a conventional proportional–integral–derivative (PID) control mechanism, the results demonstrated that our controller could shift the resonance frequency leftward on the frequency domain and, as a result, improve the efficiency of the energy harvester, provided that the excitation frequency is lower than the resonance frequency of the energy harvester. Application of the PID controller in the resonance zone resulted in pull-in instability, adversely affecting the harvester’s performance. To tackle this problem, we embedded a saturation mechanism in the path of the control signal to prevent a sudden change in motion amplitude. Outside the pull-in band, the saturation of the control signal resulted in the reduction of harvested power compared to the non-saturated signal; this is a promising improvement in the design and analysis of energy harvesting devices.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration5030035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an active control method to adjust the resonance frequency of a capacitive energy harvester. To this end, the resonance frequency of the harvester is tuned using an electrostatic force, which is actively controlled by a voltage source. The spring softening effect of the electrostatic force is used to accommodate the dominant frequency of the ambient mechanical vibration within the bandwidth of the resonance region. A single degree of freedom is considered, and the nonlinear equation of motion is numerically integrated over time. Using a conventional proportional–integral–derivative (PID) control mechanism, the results demonstrated that our controller could shift the resonance frequency leftward on the frequency domain and, as a result, improve the efficiency of the energy harvester, provided that the excitation frequency is lower than the resonance frequency of the energy harvester. Application of the PID controller in the resonance zone resulted in pull-in instability, adversely affecting the harvester’s performance. To tackle this problem, we embedded a saturation mechanism in the path of the control signal to prevent a sudden change in motion amplitude. Outside the pull-in band, the saturation of the control signal resulted in the reduction of harvested power compared to the non-saturated signal; this is a promising improvement in the design and analysis of energy harvesting devices.
关于提高主动可调谐MEMS能量采集装置的效率
在本文中,我们提出了一种主动控制方法来调整电容式能量采集器的谐振频率。为此,使用由电压源主动控制的静电力来调节收割机的谐振频率。静电力的弹簧软化效应用于在共振区域的带宽内适应环境机械振动的主频率。考虑了单个自由度,并对非线性运动方程进行了随时间的数值积分。使用传统的比例-积分-微分(PID)控制机制,结果表明,只要激励频率低于能量采集器的谐振频率,我们的控制器可以在频域上向左移动谐振频率,从而提高能量采集器的效率。PID控制器在谐振区的应用导致了牵引不稳定,对收割机的性能产生了不利影响。为了解决这个问题,我们在控制信号的路径中嵌入了饱和机制,以防止运动幅度的突然变化。在引入频带之外,与非饱和信号相比,控制信号的饱和导致收获功率的降低;这是在能量收集装置的设计和分析方面的一个有希望的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信