{"title":"Using swarm intelligence optimization algorithms to predict the height of fractured water-conducting zone","authors":"Dekang Zhao, Zhenghao Li, Guo-rui Feng, Fulong Wang, Chenwei Hao, Yaming He, Shuning Dong","doi":"10.1177/01445987231178938","DOIUrl":null,"url":null,"abstract":"The accurate calculation of the height of fractured water-conducting zone (FWCZ) is of great significance for mine optimization design, water disaster prevention, and safety production of the coal mines. In this article, a height-prediction model of FWCZ based on extreme learning machine (ELM) is proposed. To address the issues of low prediction accuracy and challenging parameter optimization, we optimized the ELM model using the gray-wolf optimization algorithm (GOA), whale optimization algorithm (WOA), and salp optimization algorithm (SOA). These optimization algorithms mitigate the issues of slow convergence, poor stability, and local optimality associated with traditional neural networks. The mining depth, mining height, overburden strata structure, working face length, and coal seam dip angle are selected as the main controlling factors for the height of FWCZ. A total of 42 fields-measured samples are collected and divided into 2 subsets for training and validating with a ratio of 36/6. The prediction capability of GOA-ELM, WOA-ELM, and SOA-ELM models are evaluated and compared, and the results show that the calculation results of the three models are optimized compared with the ELM model. The prediction capability of GOA and WOA are similar, while the prediction results of SOA-ELM are better than the other two models, and the relative errors of the test sets are all less than 10%. Therefore, the SOA-ELM model is finally applied to predict the height of FWCZ formed after the mining of No.15 coal seam in Xinjian Coal Mine. Finally, we verified the prediction results using measured data from the borehole television detection instrument, which showed good consistency. This provides further evidence of the effectiveness of the swarm intelligence optimization algorithm in predicting the height of FWCZ.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"41 1","pages":"1603 - 1627"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01445987231178938","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate calculation of the height of fractured water-conducting zone (FWCZ) is of great significance for mine optimization design, water disaster prevention, and safety production of the coal mines. In this article, a height-prediction model of FWCZ based on extreme learning machine (ELM) is proposed. To address the issues of low prediction accuracy and challenging parameter optimization, we optimized the ELM model using the gray-wolf optimization algorithm (GOA), whale optimization algorithm (WOA), and salp optimization algorithm (SOA). These optimization algorithms mitigate the issues of slow convergence, poor stability, and local optimality associated with traditional neural networks. The mining depth, mining height, overburden strata structure, working face length, and coal seam dip angle are selected as the main controlling factors for the height of FWCZ. A total of 42 fields-measured samples are collected and divided into 2 subsets for training and validating with a ratio of 36/6. The prediction capability of GOA-ELM, WOA-ELM, and SOA-ELM models are evaluated and compared, and the results show that the calculation results of the three models are optimized compared with the ELM model. The prediction capability of GOA and WOA are similar, while the prediction results of SOA-ELM are better than the other two models, and the relative errors of the test sets are all less than 10%. Therefore, the SOA-ELM model is finally applied to predict the height of FWCZ formed after the mining of No.15 coal seam in Xinjian Coal Mine. Finally, we verified the prediction results using measured data from the borehole television detection instrument, which showed good consistency. This provides further evidence of the effectiveness of the swarm intelligence optimization algorithm in predicting the height of FWCZ.
期刊介绍:
Energy Exploration & Exploitation is a peer-reviewed, open access journal that provides up-to-date, informative reviews and original articles on important issues in the exploration, exploitation, use and economics of the world’s energy resources.