{"title":"-Band Class-B VCO in 22 nm FD-SOI With Inductive Source Degeneration of the Tail Current Source","authors":"Farhad Bozorgi, Elham Rahimi, Mengqi Cui, P. Sen","doi":"10.1109/LMWC.2022.3178916","DOIUrl":null,"url":null,"abstract":"In this work, a voltage-controlled oscillator (VCO) in the <inline-formula> <tex-math notation=\"LaTeX\">$K$ </tex-math></inline-formula>-band has been introduced that uses the proposed technique named “inductive source degeneration of the tail current source.” The contribution of this work is that the auxiliary resonator is placed differently than the conventional works so that it leads to a more compact solution without affecting the phase noise (PN). Based on the simulation results, for the same device sizes and power consumption, the proposed Class-B method reduces the PN by 1.5 dB than the conventional one at 1 MHz offset from 24 GHz center frequency. VCO has been fabricated on a die area of 0.026 mm2 in the 22 nm fully depleted silicon on insulator (FD-SOI) technology. The measurement was done in the free-running mode, and the results show a PN of −122.4 dBc/Hz at 10 MHz offset from the center frequency of 23.8 GHz. The power consumption of the VCO core is 14.4 mW with 1 V supply voltage. According to the measurement results, this work achieves <inline-formula> <tex-math notation=\"LaTeX\">${\\text {FoM}_{A}}$ </tex-math></inline-formula>, a figure of merit which considers the VCO core area, of −194.2 dBc/Hz at 10 MHz offset from the center frequency, featuring state-of-the-art among the CMOS VCOs in the <inline-formula> <tex-math notation=\"LaTeX\">$K$ </tex-math></inline-formula>-band.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1351-1354"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3178916","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, a voltage-controlled oscillator (VCO) in the $K$ -band has been introduced that uses the proposed technique named “inductive source degeneration of the tail current source.” The contribution of this work is that the auxiliary resonator is placed differently than the conventional works so that it leads to a more compact solution without affecting the phase noise (PN). Based on the simulation results, for the same device sizes and power consumption, the proposed Class-B method reduces the PN by 1.5 dB than the conventional one at 1 MHz offset from 24 GHz center frequency. VCO has been fabricated on a die area of 0.026 mm2 in the 22 nm fully depleted silicon on insulator (FD-SOI) technology. The measurement was done in the free-running mode, and the results show a PN of −122.4 dBc/Hz at 10 MHz offset from the center frequency of 23.8 GHz. The power consumption of the VCO core is 14.4 mW with 1 V supply voltage. According to the measurement results, this work achieves ${\text {FoM}_{A}}$ , a figure of merit which considers the VCO core area, of −194.2 dBc/Hz at 10 MHz offset from the center frequency, featuring state-of-the-art among the CMOS VCOs in the $K$ -band.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.