Machine learning classificatory as a tool in the diagnosis of amyotrophic lateral sclerosis using diffusion tensor imaging parameters collected with 1.5T MRI scanner: A case study

IF 0.9 Q3 MEDICINE, GENERAL & INTERNAL
Milosz Jamrozy, E. Maj, M. Bielecki, Marta Bartoszek, M. Gołębiowski, M. Kuźma-Kozakiewicz
{"title":"Machine learning classificatory as a tool in the diagnosis of amyotrophic lateral sclerosis using diffusion tensor imaging parameters collected with 1.5T MRI scanner: A case study","authors":"Milosz Jamrozy, E. Maj, M. Bielecki, Marta Bartoszek, M. Gołębiowski, M. Kuźma-Kozakiewicz","doi":"10.29333/ejgm/13536","DOIUrl":null,"url":null,"abstract":"The relevance of the study lies in the need to improve the diagnosis of amyotrophic lateral sclerosis (ALS) by utilizing diffusion tensor imaging (DTI) obtained from conventional 1.5 Tesla MRI scanners. The study aimed to investigate the potential of using different machine learning (ML) classifiers to distinguish between individuals with ALS. In this study, five ML classifiers (“support vector machine (SVM)”, “k-nearest neighbors (K-NN)”, naïve Bayesian classifier, “decision tree”, and “decision forest”) were used, based on two DTI parameters: fractional anisotropy and apparent diffusion coefficient, obtained from two manually selected ROIs at the level of the brain pyramids in 47 ALS patients and 55 healthy subjects. The quality of each classifier was evaluated using the confusion matrix and ROC curves. The highest accuracy in differentiating ALS patients from healthy individuals based on DTI data was demonstrated by the radial kernel support vector method (77% accuracy [p=0.01]), while K-NN and “decision tree” classifiers had slightly lower performance, and “decision forest” classifier was overtrained to the training set (AUC=1). The authors have shown a sufficiently accuracy of ML classifier “SVM” in detecting radiological characteristics of ALS in pyramidal tracts.","PeriodicalId":44930,"journal":{"name":"Electronic Journal of General Medicine","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of General Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29333/ejgm/13536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

The relevance of the study lies in the need to improve the diagnosis of amyotrophic lateral sclerosis (ALS) by utilizing diffusion tensor imaging (DTI) obtained from conventional 1.5 Tesla MRI scanners. The study aimed to investigate the potential of using different machine learning (ML) classifiers to distinguish between individuals with ALS. In this study, five ML classifiers (“support vector machine (SVM)”, “k-nearest neighbors (K-NN)”, naïve Bayesian classifier, “decision tree”, and “decision forest”) were used, based on two DTI parameters: fractional anisotropy and apparent diffusion coefficient, obtained from two manually selected ROIs at the level of the brain pyramids in 47 ALS patients and 55 healthy subjects. The quality of each classifier was evaluated using the confusion matrix and ROC curves. The highest accuracy in differentiating ALS patients from healthy individuals based on DTI data was demonstrated by the radial kernel support vector method (77% accuracy [p=0.01]), while K-NN and “decision tree” classifiers had slightly lower performance, and “decision forest” classifier was overtrained to the training set (AUC=1). The authors have shown a sufficiently accuracy of ML classifier “SVM” in detecting radiological characteristics of ALS in pyramidal tracts.
利用1.5T MRI扫描仪收集的弥散张量成像参数进行机器学习分类在肌萎缩侧索硬化症诊断中的应用:一个案例研究
本研究的意义在于需要利用常规1.5特斯拉MRI扫描仪获得的弥散张量成像(DTI)来提高肌萎缩性侧索硬化症(ALS)的诊断。该研究旨在研究使用不同机器学习(ML)分类器区分ALS患者的潜力。本研究采用支持向量机(SVM)、k近邻(K-NN)、naïve贝叶斯分类器、决策树(decision tree)和决策森林(decision forest) 5种机器学习分类器,基于47例ALS患者和55名健康受试者在脑金字塔水平人工选择的两个roi获得的分数各向异性和表观扩散系数两个DTI参数。使用混淆矩阵和ROC曲线评估每个分类器的质量。基于DTI数据,径向核支持向量法对ALS患者与健康个体的鉴别准确率最高(77%准确率[p=0.01]),而K-NN和“决策树”分类器的准确率略低,“决策森林”分类器被过度训练到训练集(AUC=1)。作者已经证明了ML分类器“SVM”在检测锥体束ALS的放射学特征方面具有足够的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of General Medicine
Electronic Journal of General Medicine MEDICINE, GENERAL & INTERNAL-
CiteScore
3.60
自引率
4.80%
发文量
79
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信