{"title":"ON OPTIMAL CONTROL OF A STOCHASTIC EQUATION WITH A FRACTIONAL WIENER PROCESS","authors":"P. Knopov, T. Pepelyaeva, Sergey Shpiga","doi":"10.34229/1028-0979-2021-6-1","DOIUrl":null,"url":null,"abstract":"In recent years, a new direction of research has emerged in the theory of stochastic differential equations, namely, stochastic differential equations with a fractional Wiener process. This class of processes makes it possible to describe adequately many real phenomena of a stochastic nature in financial mathematics, hydrology, biology, and many other areas. These phenomena are not always described by stochastic systems satisfying the conditions of strong mixing, or weak dependence, but are described by systems with a strong dependence, and this strong dependence is regulated by the so-called Hurst parameter, which is a characteristic of this dependence. In this article, we consider the problem of the existence of an optimal control for a stochastic differential equation with a fractional Wiener process, in which the diffusion coefficient is present, which gives more accurate simulation results. An existence theorem is proved for an optimal control of a process that satisfies the corresponding stochastic differential equation. The main result was obtained using the Girsanov theorem for such processes and the existence theorem for a weak solution for stochastic equations with a fractional Wiener process.","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/1028-0979-2021-6-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, a new direction of research has emerged in the theory of stochastic differential equations, namely, stochastic differential equations with a fractional Wiener process. This class of processes makes it possible to describe adequately many real phenomena of a stochastic nature in financial mathematics, hydrology, biology, and many other areas. These phenomena are not always described by stochastic systems satisfying the conditions of strong mixing, or weak dependence, but are described by systems with a strong dependence, and this strong dependence is regulated by the so-called Hurst parameter, which is a characteristic of this dependence. In this article, we consider the problem of the existence of an optimal control for a stochastic differential equation with a fractional Wiener process, in which the diffusion coefficient is present, which gives more accurate simulation results. An existence theorem is proved for an optimal control of a process that satisfies the corresponding stochastic differential equation. The main result was obtained using the Girsanov theorem for such processes and the existence theorem for a weak solution for stochastic equations with a fractional Wiener process.
期刊介绍:
This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.