Understanding the Role of Geometric and Electronic Structure in Bioinspired Catalyst Design: the Case of Formate Dehydrogenase

Mingjie Liu, Azadeh Nazemi, Michael Taylor, Aditya Nandy, Chenru Duan, A. Steeves, H. Kulik
{"title":"Understanding the Role of Geometric and Electronic Structure in Bioinspired Catalyst Design: the Case of Formate Dehydrogenase","authors":"Mingjie Liu, Azadeh Nazemi, Michael Taylor, Aditya Nandy, Chenru Duan, A. Steeves, H. Kulik","doi":"10.33774/chemrxiv-2021-397ph","DOIUrl":null,"url":null,"abstract":"The design of bioinspired synthetic inorganic molecular complexes is challenging, due to a lack of understanding of enzyme action and the degree to which that action can be translated into mimics. Exemplary of this challenge is the reversible conversion of formate into CO2 by formate dehydrogenase (FDH) enzymes with Mo/W centers in large molybdopterin cofactors. Despite numerous efforts to synthesize Mo/W-containing molecular complexes, none have been demonstrated to reproduce the full reactivity of FDH. Here, we carry out a large-scale, high-throughput screening study on all mononuclear Mo/W complexes currently deposited in Cambridge Structural Database (CSD). Using density functional theory, we systematically investigate the individual effects of metal identity, ligand identity, oxidation state, and coordination number on structural, electronic and catalytic properties. We compare our results on molecular complexes with quantum mechanics/molecular mechanics simulations on a representative FDH enzyme to further elucidate the influence of the enzyme environment. These comparisons reveal that the enzyme environment primarily influences the metal-local geometry, and these metal-local structural variations can improve catalysis. Through a series of computational mutations on molecular complexes, we extend beyond the CSD structures to further identify the limits of varied chalcogen and metal identity. This broad set and comparison reveal relatively little variation of electronic properties of the metal center due to the presence of the enzyme environment or changes in metal-distant ligand chemistry. Instead, these properties are found to be much more sensitive to the identity of the metal and the nature of the bound terminal chalcogen.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-397ph","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The design of bioinspired synthetic inorganic molecular complexes is challenging, due to a lack of understanding of enzyme action and the degree to which that action can be translated into mimics. Exemplary of this challenge is the reversible conversion of formate into CO2 by formate dehydrogenase (FDH) enzymes with Mo/W centers in large molybdopterin cofactors. Despite numerous efforts to synthesize Mo/W-containing molecular complexes, none have been demonstrated to reproduce the full reactivity of FDH. Here, we carry out a large-scale, high-throughput screening study on all mononuclear Mo/W complexes currently deposited in Cambridge Structural Database (CSD). Using density functional theory, we systematically investigate the individual effects of metal identity, ligand identity, oxidation state, and coordination number on structural, electronic and catalytic properties. We compare our results on molecular complexes with quantum mechanics/molecular mechanics simulations on a representative FDH enzyme to further elucidate the influence of the enzyme environment. These comparisons reveal that the enzyme environment primarily influences the metal-local geometry, and these metal-local structural variations can improve catalysis. Through a series of computational mutations on molecular complexes, we extend beyond the CSD structures to further identify the limits of varied chalcogen and metal identity. This broad set and comparison reveal relatively little variation of electronic properties of the metal center due to the presence of the enzyme environment or changes in metal-distant ligand chemistry. Instead, these properties are found to be much more sensitive to the identity of the metal and the nature of the bound terminal chalcogen.
理解几何和电子结构在生物催化剂设计中的作用:以甲酸脱氢酶为例
受生物启发的合成无机分子复合物的设计具有挑战性,因为缺乏对酶作用以及该作用转化为模拟物的程度的了解。这一挑战的示例是通过在大型钼蛋白辅因子中具有Mo/W中心的甲酸脱氢酶(FDH)将甲酸酯可逆转化为CO2。尽管进行了大量的努力来合成含Mo/W的分子复合物,但没有一种被证明能再现FDH的完全反应性。在这里,我们对目前存放在剑桥结构数据库(CSD)中的所有单核Mo/W复合物进行了大规模、高通量的筛选研究。利用密度泛函理论,我们系统地研究了金属身份、配体身份、氧化态和配位数对结构、电子和催化性能的单独影响。我们将分子复合物的结果与代表性FDH酶的量子力学/分子力学模拟进行了比较,以进一步阐明酶环境的影响。这些比较表明,酶环境主要影响金属的局部几何结构,这些金属的局部结构变化可以改善催化作用。通过分子复合物上的一系列计算突变,我们超越了CSD结构,进一步确定了各种硫族元素和金属身份的极限。这种广泛的集合和比较揭示了由于酶环境的存在或金属远处配体化学的变化,金属中心的电子性质的变化相对较小。相反,发现这些性质对金属的特性和结合的末端硫族元素的性质更敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信