On Biorthogonalization of a Dirichlet System Over a Finite Interval

IF 0.5 Q3 MATHEMATICS
M. S. Martirosyan, D. Martirosyan
{"title":"On Biorthogonalization of a Dirichlet System Over a Finite Interval","authors":"M. S. Martirosyan, D. Martirosyan","doi":"10.52737/18291163-2019.11.4-1-9","DOIUrl":null,"url":null,"abstract":"Ultimately aiming to estimate Dirichlet polynomials, a representation problem for special biorthogonal systems of exponentials is explored in $L^2(0,a)$. If $a=+\\infty$, a method of construction of such systems through suitable Blaschke products is known, but the method ceases to operate when $a$ is finite.\n\nIt turns out that the Blaschke product cannot be even adjusted to maintain the old method for the new situation. The biorthogonal system is then represented by a single determinant of a modified Gram matrix of the original system. Bernstein-type inequalities for Dirichlet polynomials and their higher order derivatives are established. The best constants and extremal polynomials are obtained in terms of the Gram matrix.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2019.11.4-1-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultimately aiming to estimate Dirichlet polynomials, a representation problem for special biorthogonal systems of exponentials is explored in $L^2(0,a)$. If $a=+\infty$, a method of construction of such systems through suitable Blaschke products is known, but the method ceases to operate when $a$ is finite. It turns out that the Blaschke product cannot be even adjusted to maintain the old method for the new situation. The biorthogonal system is then represented by a single determinant of a modified Gram matrix of the original system. Bernstein-type inequalities for Dirichlet polynomials and their higher order derivatives are established. The best constants and extremal polynomials are obtained in terms of the Gram matrix.
有限区间上Dirichlet系统的双正交化
本文在$L^2(0,a)$中探讨了一类特殊指数双正交系统的表示问题,最终目的是估计Dirichlet多项式。如果$a=+\infty$,则已知通过合适的Blaschke产品构建此类系统的方法,但当$a$有限时,该方法停止运行。事实证明,Blaschke产品甚至无法调整以维持旧方法以适应新情况。然后用原系统的修改的格拉姆矩阵的单行列式来表示双正交系统。建立了狄利克雷多项式及其高阶导数的bernstein型不等式。用格拉姆矩阵得到了最佳常数和极值多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
13
审稿时长
48 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信