Deep relu neural networks overcome the curse of dimensionality for partial integrodifferential equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lukas Gonon, C. Schwab
{"title":"Deep relu neural networks overcome the curse of dimensionality for partial integrodifferential equations","authors":"Lukas Gonon, C. Schwab","doi":"10.1142/s0219530522500129","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) with ReLU activation function are proved to be able to express viscosity solutions of linear partial integrodifferental equations (PIDEs) on state spaces of possibly high dimension $d$. Admissible PIDEs comprise Kolmogorov equations for high-dimensional diffusion, advection, and for pure jump L\\'{e}vy processes. We prove for such PIDEs arising from a class of jump-diffusions on $\\mathbb{R}^d$, that for any compact $K\\subset \\mathbb{R}^d$, there exist constants $C,{\\mathfrak{p}},{\\mathfrak{q}}>0$ such that for every $\\varepsilon \\in (0,1]$ and for every $d\\in \\mathbb{N}$ the normalized (over $K$) DNN $L^2$-expression error of viscosity solutions of the PIDE is of size $\\varepsilon$ with DNN size bounded by $Cd^{\\mathfrak{p}}\\varepsilon^{-\\mathfrak{q}}$. In particular, the constant $C>0$ is independent of $d\\in \\mathbb{N}$ and of $\\varepsilon \\in (0,1]$ and depends only on the coefficients in the PIDE and the measure used to quantify the error. This establishes that ReLU DNNs can break the curse of dimensionality (CoD for short) for viscosity solutions of linear, possibly degenerate PIDEs corresponding to Markovian jump-diffusion processes. As a consequence of the employed techniques we also obtain that expectations of a large class of path-dependent functionals of the underlying jump-diffusion processes can be expressed without the CoD.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530522500129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 15

Abstract

Deep neural networks (DNNs) with ReLU activation function are proved to be able to express viscosity solutions of linear partial integrodifferental equations (PIDEs) on state spaces of possibly high dimension $d$. Admissible PIDEs comprise Kolmogorov equations for high-dimensional diffusion, advection, and for pure jump L\'{e}vy processes. We prove for such PIDEs arising from a class of jump-diffusions on $\mathbb{R}^d$, that for any compact $K\subset \mathbb{R}^d$, there exist constants $C,{\mathfrak{p}},{\mathfrak{q}}>0$ such that for every $\varepsilon \in (0,1]$ and for every $d\in \mathbb{N}$ the normalized (over $K$) DNN $L^2$-expression error of viscosity solutions of the PIDE is of size $\varepsilon$ with DNN size bounded by $Cd^{\mathfrak{p}}\varepsilon^{-\mathfrak{q}}$. In particular, the constant $C>0$ is independent of $d\in \mathbb{N}$ and of $\varepsilon \in (0,1]$ and depends only on the coefficients in the PIDE and the measure used to quantify the error. This establishes that ReLU DNNs can break the curse of dimensionality (CoD for short) for viscosity solutions of linear, possibly degenerate PIDEs corresponding to Markovian jump-diffusion processes. As a consequence of the employed techniques we also obtain that expectations of a large class of path-dependent functionals of the underlying jump-diffusion processes can be expressed without the CoD.
深度relu神经网络克服偏积分微分方程的维数诅咒
证明了具有ReLU激活函数的深度神经网络能够在可能高维的状态空间上表达线性偏积分微分方程(PIDEs)的粘性解。可容许的PIDEs包括高维扩散、平流和纯跳变L\ {e}vy过程的Kolmogorov方程。我们证明了由$\mathbb{R}^d$上的一类跳扩散引起的PIDE,对于任意紧化的$K\子集$ mathbb{R}^d$,存在常数$C,{\mathfrak{p}},{\mathfrak{q}}> $,使得PIDE黏性解的归一化(超过$K$) DNN $L^2$表达式误差的大小为$\varepsilon$, DNN的大小以$Cd^{\mathfrak{p}}\varepsilon^{-\mathfrak{q}}$为界。特别是,常数$C> $独立于$d\ In \mathbb{N}$和$ varepsilon \ In(0,1]$,并且仅取决于PIDE中的系数和用于量化误差的度量。这表明,ReLU dnn可以打破与马尔可夫跳跃扩散过程相对应的线性可能退化的PIDEs的粘度解的维数诅咒(简称CoD)。作为所采用的技术的结果,我们还得到了一大类与路径相关的泛函的期望可以在没有CoD的情况下表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信