Context Generation Improves Open Domain Question Answering

Dan Su, M. Patwary, Shrimai Prabhumoye, Peng Xu, R. Prenger, M. Shoeybi, Pascale Fung, Anima Anandkumar, Bryan Catanzaro
{"title":"Context Generation Improves Open Domain Question Answering","authors":"Dan Su, M. Patwary, Shrimai Prabhumoye, Peng Xu, R. Prenger, M. Shoeybi, Pascale Fung, Anima Anandkumar, Bryan Catanzaro","doi":"10.48550/arXiv.2210.06349","DOIUrl":null,"url":null,"abstract":"Closed-book question answering (QA) requires a model to directly answer an open-domain question without access to any external knowledge. Prior work on closed-book QA either directly finetunes or prompts a pretrained language model (LM) to leverage the stored knowledge. However, they do not fully exploit the parameterized knowledge. To address this inefficiency, we propose a two-stage, closed-book QA framework which employs a coarse-to-fine approach to extract the relevant knowledge and answer a question. We first generate a related context for a given question by prompting a pretrained LM. We then prompt the same LM to generate an answer using the generated context and the question. Additionally, we marginalize over the generated contexts to improve the accuracies and reduce context uncertainty. Experimental results on three QA benchmarks show that our method significantly outperforms previous closed-book QA methods. For example on TriviaQA, our method improves exact match accuracy from 55.3% to 68.6%, and is on par with open-book QA methods (68.6% vs. 68.0%). Our results show that our new methodology is able to better exploit the stored knowledge in pretrained LMs without adding extra learnable parameters or needing finetuning, and paves the way for hybrid models that integrate pretrained LMs with external knowledge.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":"1 1","pages":"781-796"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.06349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Closed-book question answering (QA) requires a model to directly answer an open-domain question without access to any external knowledge. Prior work on closed-book QA either directly finetunes or prompts a pretrained language model (LM) to leverage the stored knowledge. However, they do not fully exploit the parameterized knowledge. To address this inefficiency, we propose a two-stage, closed-book QA framework which employs a coarse-to-fine approach to extract the relevant knowledge and answer a question. We first generate a related context for a given question by prompting a pretrained LM. We then prompt the same LM to generate an answer using the generated context and the question. Additionally, we marginalize over the generated contexts to improve the accuracies and reduce context uncertainty. Experimental results on three QA benchmarks show that our method significantly outperforms previous closed-book QA methods. For example on TriviaQA, our method improves exact match accuracy from 55.3% to 68.6%, and is on par with open-book QA methods (68.6% vs. 68.0%). Our results show that our new methodology is able to better exploit the stored knowledge in pretrained LMs without adding extra learnable parameters or needing finetuning, and paves the way for hybrid models that integrate pretrained LMs with external knowledge.
上下文生成改进了开放域问答
闭式问答(QA)需要一个模型来直接回答开放领域的问题,而无需访问任何外部知识。先前关于闭书QA的工作要么直接微调,要么提示预先训练的语言模型(LM)来利用存储的知识。然而,它们并没有充分利用参数化知识。为了解决这种低效问题,我们提出了一个两阶段的闭书QA框架,该框架采用从粗到细的方法来提取相关知识并回答问题。我们首先通过提示预先训练的LM来生成给定问题的相关上下文。然后,我们提示同一LM使用生成的上下文和问题生成答案。此外,我们将生成的上下文边缘化,以提高准确性并减少上下文的不确定性。在三个QA基准测试上的实验结果表明,我们的方法显著优于以前的闭书QA方法。例如,在TriviaQA上,我们的方法将精确匹配精度从55.3%提高到68.6%,与开卷QA方法不相上下(68.6%对68.0%)。我们的结果表明,我们的新方法能够更好地利用预训练的LM中存储的知识,而无需添加额外的可学习参数或进行微调,并为将预训练的LMs与外部知识相结合的混合模型铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信