Identification of lithology using Sentinel-2A through an ensemble of machine learning algorithms

IF 0.3 Q4 GEOGRAPHY
{"title":"Identification of lithology using Sentinel-2A through an ensemble of machine learning algorithms","authors":"","doi":"10.4018/ijagr.297524","DOIUrl":null,"url":null,"abstract":"Remotely sensed data has become an effective, operative and applicable tool that provide critical support for geological surveys and studies by reducing the costs and increasing the precision. Advances in remote-sensing data analysis methods, like machine learning algorithms, allow for easy and impartial geological mapping. This study aims to carry out a rigorous comparison of the performance of three supervised classification methods: Random Forest, k-Nearest Neighbor and maximum likelihood using remote sensing data and additional information in Souk El Had N’Befourna region. The enhancement of remote sensing geological classification by using geomorphometric features, principal component analysis, gray level co-occurrence matrix (GLCM) and multispectral data of the Sentinel-2A imagery was highlighted. The Random Forest algorithm showed reliable results and discriminated limestone, dolomite, conglomerate, sandstone and rhyolite, silt and Alluvium, ignimbrite, granodiorite, Lutite, granite, and quartzite. The best overall accuracy (~91%) was achieved by Random Forest algorithm.","PeriodicalId":43062,"journal":{"name":"International Journal of Applied Geospatial Research","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Geospatial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijagr.297524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 3

Abstract

Remotely sensed data has become an effective, operative and applicable tool that provide critical support for geological surveys and studies by reducing the costs and increasing the precision. Advances in remote-sensing data analysis methods, like machine learning algorithms, allow for easy and impartial geological mapping. This study aims to carry out a rigorous comparison of the performance of three supervised classification methods: Random Forest, k-Nearest Neighbor and maximum likelihood using remote sensing data and additional information in Souk El Had N’Befourna region. The enhancement of remote sensing geological classification by using geomorphometric features, principal component analysis, gray level co-occurrence matrix (GLCM) and multispectral data of the Sentinel-2A imagery was highlighted. The Random Forest algorithm showed reliable results and discriminated limestone, dolomite, conglomerate, sandstone and rhyolite, silt and Alluvium, ignimbrite, granodiorite, Lutite, granite, and quartzite. The best overall accuracy (~91%) was achieved by Random Forest algorithm.
通过集成机器学习算法,使用Sentinel-2A进行岩性识别
遥感数据已成为一种有效、可操作和适用的工具,通过降低成本和提高精度,为地质调查和研究提供重要支持。遥感数据分析方法的进步,如机器学习算法,使地质制图变得容易和公正。本研究旨在利用遥感数据和附加信息对Souk El Had N 'Befourna地区随机森林、k近邻和最大似然三种监督分类方法的性能进行严格比较。重点介绍了利用Sentinel-2A遥感影像的地貌特征、主成分分析、灰度共生矩阵(GLCM)和多光谱数据增强遥感地质分类的方法。随机森林算法结果可靠,可区分灰岩、白云岩、砾岩、砂岩和流纹岩、粉砂和冲积岩、火成岩、花岗闪长岩、Lutite、花岗岩和石英岩。随机森林算法的总体准确率达到了91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信