A class of solutions of the equation d(n2) = d(φ(n))

IF 0.4 Q4 MATHEMATICS
Zahra Amroune, D. Bellaouar, Abdelmadjid Boudaoud
{"title":"A class of solutions of the equation d(n2) = d(φ(n))","authors":"Zahra Amroune, D. Bellaouar, Abdelmadjid Boudaoud","doi":"10.7546/nntdm.2023.29.2.284-309","DOIUrl":null,"url":null,"abstract":"For any positive integer $n$ let $d\\left( n\\right) $ and $\\varphi \\left( n\\right) $ be the number of divisors of $n$ and the Euler's phi function of $n$, respectively. In this paper we present some notes on the equation $d\\left( n^{2}\\right) =d\\left( \\varphi \\left( n\\right) \\right).$ In fact, we characterize a class of solutions that have at most three distinct prime factors. Moreover, we show that Dickson's conjecture implies that $d\\left( n^{2}\\right) =d\\left( \\varphi \\left( n\\right) \\right) $ infinitely often.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.2.284-309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any positive integer $n$ let $d\left( n\right) $ and $\varphi \left( n\right) $ be the number of divisors of $n$ and the Euler's phi function of $n$, respectively. In this paper we present some notes on the equation $d\left( n^{2}\right) =d\left( \varphi \left( n\right) \right).$ In fact, we characterize a class of solutions that have at most three distinct prime factors. Moreover, we show that Dickson's conjecture implies that $d\left( n^{2}\right) =d\left( \varphi \left( n\right) \right) $ infinitely often.
方程d(n2) = d(φ(n))的一类解
对于任意正整数$n$,设$d\left( n\right) $和$\varphi \left( n\right) $分别为$n$和$n$的欧拉函数的除数。在本文中,我们给出了关于方程$d\left( n^{2}\right) =d\left( \varphi \left( n\right) \right).$的一些注意事项。事实上,我们刻画了一类至多有三个不同素数因子的解。此外,我们还证明了Dickson猜想暗示$d\left( n^{2}\right) =d\left( \varphi \left( n\right) \right) $无限频繁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信